DGtal 1.4.0
|
DGtal
is the top-level namespace which contains all DGtal functions and types.
More...
Namespaces | |
namespace | concepts |
Aim: Gathers several functions useful for concept checks. | |
namespace | dec_helper |
Namespace for functions useful to Discrete Exterior Calculus package. | |
namespace | deprecated |
Deprecated functions and types of the DGtal library. | |
namespace | detail |
detail namespace gathers internal classes and functions. | |
namespace | details |
namespace | experimental |
Experimental functions and types of the DGtal library. | |
namespace | functions |
functions namespace gathers all DGtal functionsxs. | |
namespace | functors |
functors namespace gathers all DGtal functors. | |
namespace | Z2i |
Z2i this namespace gathers the standard of types for 2D imagery. | |
namespace | Z3i |
Z3i this namespace gathers the standard of types for 3D imagery. | |
Data Structures | |
class | AccFlower2D |
Aim: Model of the concept StarShaped represents any accelerated flower in the plane. More... | |
struct | AddTextureImage2DWithFunctor |
class to insert a custom 2D textured image by using a conversion functor and allows to change the default mode (GrayScale mode) to color mode. More... | |
struct | AddTextureImage3DWithFunctor |
class to insert a custom 3D textured image by using a conversion functor and allows to change the default mode (GrayScale mode) to color mode. More... | |
class | Alias |
Aim: This class encapsulates its parameter class so that to indicate to the user that the object/pointer will be only aliased. Therefore the user is reminded that the argument parameter is given to the function without any additional cost and may be modified, while he is aware that the lifetime of the argument parameter must be at least as long as the object itself. Note that an instance of Alias<T> is itself a light object (it holds only an enum and a pointer). More... | |
class | AlphaThickSegmentComputer |
Aim: This class is devoted to the recognition of alpha thick segments as described in [51] . From a maximal diagonal alphaMax thickness, it recognizes thick segments and may thus take into account some noise in the input contour. Moreover points of the segment may not be (digitally) connected and may have floating point coordinates. Connection is only given by the order of the points. More... | |
struct | AngleComputer |
class | AngleLinearMinimizer |
Aim: Used to minimize the angle variation between different angles while taking into accounts min and max constraints. Example (. More... | |
class | AngleLinearMinimizerByAdaptiveStepGradientDescent |
class | AngleLinearMinimizerByGradientDescent |
class | AngleLinearMinimizerByRelaxation |
class | ArithDSSIterator |
Aim: An iterator on the points of a Digital Straight Segment. Template parameters are the integer type and the connectivity of the DSS (8-connectivity as default value). More... | |
class | ArithmeticalDSL |
Aim: This class represents a naive (resp. standard) digital straight line (DSL), ie. the set of digital points \( (x,y) \in \mathbb{Z}^2 \) such that \( \mu \leq ax - by < \mu + \omega \) with \( a,b,\mu,\omega \in \mathbb{Z} \), \( \gcd(a,b) = 1 \) and \( \omega = \max(|a|,|b|) \) (resp. \( \omega = |a| + |b| \)). Note that any DSL such that \( \omega = \max(|a|,|b|) \) (resp. \( \omega = |a| + |b| \)) is simply 8-connected (resp. 4-connected). More... | |
struct | ArithmeticalDSLKernel |
Aim: Small class that contains the code that depends on the arithmetical thickness (either naive or standard) of a digital straight line (DSL). It provides mainly two static methods: More... | |
struct | ArithmeticalDSLKernel< TCoordinate, 4 > |
class | ArithmeticalDSS |
Aim: This class represents a naive (resp. standard) digital straight segment (DSS), ie. the sequence of simply 8- (resp. 4-)connected digital points contained in a naive (resp. standard) digital straight line (DSL) between two points of it. More... | |
class | ArithmeticalDSSComputer |
Aim: This class is a wrapper around ArithmeticalDSS that is devoted to the dynamic recognition of digital straight segments (DSS) along any sequence of digital points. More... | |
class | ArithmeticalDSSComputerOnSurfels |
Aim: This class is a wrapper around ArithmeticalDSS that is devoted to the dynamic recognition of digital straight segments (DSS) along any sequence of 3D surfels. More... | |
class | ArithmeticalDSSFactory |
Aim: Set of static methods that create digital straight segments (DSS) from some input parameters, eg. patterns (or reversed patterns) from two upper leaning points (or lower leaning points). More... | |
struct | ArithmeticConversionTraits |
Aim: Trait class to get result type of arithmetic binary operators between two given types. More... | |
struct | ArithmeticConversionTraits< __gmp_expr< GMP1, GMP2 >, U, typename std::enable_if< std::is_integral< U >::value >::type > |
Specialization when second operand is a BigInteger. More... | |
struct | ArithmeticConversionTraits< __gmp_expr< GMPL1, GMPL2 >, __gmp_expr< GMPR1, GMPR2 > > |
Specialization when both operands are BigInteger. More... | |
struct | ArithmeticConversionTraits< LeftEuclideanRing, PointVector< dim, RightEuclideanRing, RightContainer >, typename std::enable_if< IsArithmeticConversionValid< LeftEuclideanRing, RightEuclideanRing >::value &&! IsAPointVector< LeftEuclideanRing >::value >::type > |
Specialization of ArithmeticConversionTraits when right operand is a PointVector. More... | |
struct | ArithmeticConversionTraits< PointVector< dim, LeftEuclideanRing, LeftContainer >, PointVector< dim, RightEuclideanRing, RightContainer >, typename std::enable_if< IsArithmeticConversionValid< LeftEuclideanRing, RightEuclideanRing >::value >::type > |
Specialization of ArithmeticConversionTraits when both operands are PointVector. More... | |
struct | ArithmeticConversionTraits< PointVector< dim, LeftEuclideanRing, LeftContainer >, RightEuclideanRing, typename std::enable_if< IsArithmeticConversionValid< LeftEuclideanRing, RightEuclideanRing >::value &&! IsAPointVector< RightEuclideanRing >::value >::type > |
Specialization of ArithmeticConversionTraits when left operand is a PointVector. More... | |
struct | ArithmeticConversionTraits< T, __gmp_expr< GMP1, GMP2 >, typename std::enable_if< std::is_integral< T >::value >::type > |
Specialization when first operand is a BigInteger. More... | |
struct | ArithmeticConversionTraits< T, U, typename std::enable_if< ! std::is_same< T, typename std::remove_cv< typename std::remove_reference< T >::type >::type >::value||! std::is_same< U, typename std::remove_cv< typename std::remove_reference< U >::type >::type >::value >::type > |
Specialization in order to remove const specifiers and references from given types. More... | |
struct | ArithmeticConversionTraits< T, U, typename std::enable_if< std::is_arithmetic< T >::value &&std::is_arithmetic< U >::value >::type > |
Specialization for (fundamental) arithmetic types. More... | |
class | ArrayImageAdapter< TArrayIterator, HyperRectDomain< TSpace > > |
Aim: Image adapter for generic arrays with sub-domain view capability. More... | |
class | ArrayImageIterator |
Aim: Random access iterator over an image given his definition domain and viewable domain. More... | |
struct | AssociativeCategory |
class | Astroid2D |
Aim: Model of the concept StarShaped represents an astroid. More... | |
class | ATSolver2D |
Aim: This class solves Ambrosio-Tortorelli functional on a two-dimensional digital space (a 2D grid or 2D digital surface) for a piecewise smooth scalar/vector function u represented as one/several 2-form(s) and a discontinuity function v represented as a 0-form. The 2-form(s) u is a regularized approximation of an input vector data g, while v represents the set of discontinuities of u. The norm chosen for u is the \( l_2 \)-norm. More... | |
class | AvnaimEtAl2x2DetSignComputer |
Aim: Class that provides a way of computing the sign of the determinant of a 2x2 matrix from its four coefficients, ie. More... | |
class | BackInsertionSequenceToStackAdapter |
Aim: This class implements a dynamic adapter to an instance of a model of back insertion sequence in order to get a stack interface. This class is a model of CStack. More... | |
class | Ball2D |
Aim: Model of the concept StarShaped represents any circle in the plane. More... | |
class | Ball3D |
Aim: Model of the concept StarShaped3D represents any Sphere in the space. More... | |
struct | BidirectionalCategory |
struct | BidirectionalSegmentComputer |
class | BinomialConvolver |
Aim: This class represents a 2D contour convolved by some binomial. It computes first and second order derivatives so as to be able to estimate tangent and curvature. In particular, it smoothes digital contours but could be used for other kind of contours. More... | |
class | BinomialConvolverEstimator |
Aim: This class encapsulates a BinomialConvolver and a functor on BinomialConvolver so as to be a model of CCurveLocalGeometricEstimator. More... | |
struct | Bits |
class | BLUELocalLengthEstimator |
Aim: Best Linear Unbiased Two step length estimator. More... | |
class | Board2D |
Aim: This class specializes a 'Board' class so as to display DGtal objects more naturally (with <<). The user has simply to declare a Board2D object and uses stream operators to display most digital objects. Furthermore, one can use this class to modify the current style for drawing. More... | |
class | Board3D |
The class Board3D is a type of Display3D which export the figures in the format OBJ/MTL when calling the method saveOBJ. More... | |
class | Board3DTo2D |
Class for PDF, PNG, PS, EPS, SVG export drawings with Cairo with 3D->2D projection. More... | |
struct | Board3DTo2DFactory |
Factory for GPL Display3D: More... | |
class | BoundedLatticePolytope |
Aim: Represents an nD lattice polytope, i.e. a convex polyhedron bounded with vertices with integer coordinates, as a set of inequalities. Otherwise said, it is a H-representation of a polytope (as an intersection of half-spaces). A limitation is that we model only bounded polytopes, i.e. polytopes that can be included in a finite bounding box. More... | |
class | BoundedLatticePolytopeCounter |
Aim: Useful to compute quickly the lattice points within a polytope, i.e. a convex polyhedron. More... | |
class | BoundedRationalPolytope |
Aim: Represents an nD rational polytope, i.e. a convex polyhedron bounded by vertices with rational coordinates, as a set of inequalities. Otherwise said, it is a H-representation of a polytope (as an intersection of half-spaces). A limitation is that we model only bounded polytopes, i.e. polytopes that can be included in a finite bounding box. More... | |
class | BreadthFirstVisitor |
Aim: This class is useful to perform a breadth-first exploration of a graph given a starting point or set (called initial core). More... | |
struct | C2x2DetComputer |
Aim: This concept gathers all models that are able to compute the (sign of the) determinant of a 2x2 matrix with integral entries. More... | |
struct | CameraDirection |
CameraDirection class to set camera direction. More... | |
struct | CameraPosition |
CameraPosition class to set camera position. More... | |
struct | CameraUpVector |
CameraUpVector class to set camera up-vector. More... | |
struct | CameraZNearFar |
CameraZNearFar class to set near and far distance. More... | |
struct | CanonicCellEmbedder |
Aim: A trivial embedder for signed and unsigned cell, which corresponds to the canonic injection of cell centroids into Rn. More... | |
struct | CanonicDigitalSurfaceEmbedder |
Aim: A trivial embedder for digital surfaces, which corresponds to the canonic injection of cell centroids into Rn. More... | |
struct | CanonicEmbedder |
Aim: A trivial embedder for digital points, which corresponds to the canonic injection of Zn into Rn. More... | |
struct | CanonicSCellEmbedder |
Aim: A trivial embedder for signed cell, which corresponds to the canonic injection of cell centroids into Rn. More... | |
struct | CBidirectionalIteratorArchetype |
An archetype of BidirectionalIterator. More... | |
struct | CConstBidirectionalIteratorArchetype |
An archetype of ConstBidirectionalIterator. More... | |
class | CellGeometry |
Aim: Computes and stores sets of cells and provides methods to compute intersections of lattice and rational polytopes with cells. More... | |
struct | CellGeometryFunctions |
struct | CellGeometryFunctions< TKSpace, 1, 2 > |
struct | CellGeometryFunctions< TKSpace, 1, 3 > |
struct | CellGeometryFunctions< TKSpace, 2, 2 > |
struct | CellGeometryFunctions< TKSpace, 2, 3 > |
struct | CellGeometryFunctions< TKSpace, 3, 3 > |
struct | CForwardIteratorArchetype |
An archetype of ForwardIterator. More... | |
class | ChordGenericNaivePlaneComputer |
Aim: A class that recognizes pieces of digital planes of given axis width. When the width is 1, it corresponds to naive planes. Contrary to ChordNaivePlaneComputer, the axis is not specified at initialization of the object. This class uses three instances of ChordNaivePlaneComputer, one per axis. More... | |
class | ChordGenericStandardPlaneComputer |
Aim: A class that recognizes pieces of digital planes of given diagonal width. When the width is \(1 \times
\sqrt{3}\), it corresponds to standard planes. Contrary to ChordStandardPlaneComputer, the axis is not specified at initialization of the object. This class uses four instances of ChordStandardPlaneComputer of axis z, by transforming points \((x,y,z)\) to \((x \pm z, y \pm z, z)\). More... | |
class | ChordNaivePlaneComputer |
Aim: A class that contains the chord-based algorithm for recognizing pieces of digital planes of given axis width [ Gerard, Debled-Rennesson, Zimmermann, 2005 ]. When the width is 1, it corresponds to naive planes. The axis is specified at initialization of the object. More... | |
class | CircleFrom2Points |
Aim: Represents a circle that passes through a given point and that is thus uniquely defined by two other points. It is able to return for any given point its signed distance to itself. More... | |
class | CircleFrom3Points |
Aim: Represents a circle uniquely defined by three 2D points and that is able to return for any given 2D point its signed distance to itself. More... | |
class | Circulator |
Aim: Provides an adapter for classical iterators that can iterate through the underlying data structure as in a loop. The increment (resp. decrement) operator encapsulates the validity test and the assignement to the begin (resp. end) iterator of a given range, when the end (resp. beginning) has been reached. For instance, the pre-increment operator does: More... | |
struct | CirculatorType |
struct | ClippingPlane |
Class for adding a Clipping plane through the Viewer3D stream. Realizes the concept CDrawableWithViewer3D. More... | |
class | Clock |
class | Clone |
Aim: This class encapsulates its parameter class to indicate that the given parameter is required to be duplicated (generally, this is done to have a longer lifetime than the function itself). On one hand, the user is reminded of the possible cost of duplicating the argument parameter, while he is also aware that the lifetime of the parameter is not a problem for the function. On the other hand, the Clone class is smart enough to enforce duplication only if needed. Substantial speed-up can be achieve through this mechanism. More... | |
struct | ClosedIntegerHalfPlane |
Aim: A half-space specified by a vector N and a constant c. The half-space is the set \( \{ P \in Z^2, N.P \le c \} \). More... | |
class | COBAGenericNaivePlaneComputer |
Aim: A class that recognizes pieces of digital planes of given axis width. When the width is 1, it corresponds to naive planes. Contrary to COBANaivePlaneComputer, the axis is not specified at initialization of the object. This class uses three instances of COBANaivePlaneComputer, one per axis. More... | |
class | COBAGenericStandardPlaneComputer |
Aim: A class that recognizes pieces of digital planes of given axis width. When the diagonal width is \( 1 \times
\sqrt{3} \), it corresponds to standard planes. Contrary to COBANaivePlaneComputer, the axis is not specified at initialization of the object. This class uses four instances of COBANaivePlaneComputer of axis z, by transforming points \((x,y,z)\) to \((x \pm z, y \pm z, z)\). More... | |
class | COBANaivePlaneComputer |
Aim: A class that contains the COBA algorithm (Emilie Charrier, Lilian Buzer, DGCI2008) for recognizing pieces of digital planes of given axis width. When the width is 1, it corresponds to naive planes. The axis is specified at initialization of the object. More... | |
struct | ColMajorStorage |
Tag (empty structure) specifying a col-major storage order. More... | |
class | Color |
Structure representing an RGB triple with alpha component. More... | |
class | ColorBrightnessColorMap |
Aim: This class template may be used to (linearly) convert scalar values in a given range into a color with given lightness. More... | |
struct | CompareLocalEstimators |
Aim: Functor to compare two local geometric estimators. More... | |
class | ConnectivityException |
class | ConstAlias |
Aim: This class encapsulates its parameter class so that to indicate to the user that the object/pointer will be only const aliased (and hence left unchanged). Therefore the user is reminded that the argument parameter is given to the function without any additional cost and may not be modified, while he is aware that the lifetime of the argument parameter must be at least as long as the object itself. Note that an instance of ConstAlias<T> is itself a light object (it holds only an enum and a pointer). More... | |
class | ConstImageAdapter |
Aim: implements a const image adapter with a given domain (i.e. a subdomain) and 2 functors : g for domain, f for accessing point values. More... | |
class | ConstIteratorAdapter |
This class adapts any iterator so that operator* returns another element than the one pointed to by the iterator. More... | |
class | ConstRangeAdapter |
Aim: model of CConstBidirectionalRange that adapts any range of elements bounded by two iterators [itb, ite) and provides services to (circularly)iterate over it (in a read-only manner). More... | |
class | ConstRangeFromPointAdapter |
Aim: model of CConstBidirectionalRangeFromPoint that adapts any bidirectional range and provides services to iterate over it (in a read-only manner). More... | |
struct | ContainerCategory |
struct | ContainerTraits |
Defines default container traits for arbitrary types. More... | |
struct | ContainerTraits< boost::unordered_map< Value, T, Hash, Pred, Alloc > > |
Defines container traits for boost::unordered_map<>. More... | |
struct | ContainerTraits< boost::unordered_multimap< Value, T, Hash, Pred, Alloc > > |
Defines container traits for boost::unordered_multimap<>. More... | |
struct | ContainerTraits< boost::unordered_multiset< Value, Hash, Pred, Alloc > > |
Defines container traits for boost::unordered_multiset<>. More... | |
struct | ContainerTraits< boost::unordered_set< Value, Hash, Pred, Alloc > > |
Defines container traits for boost::unordered_set<>. More... | |
struct | ContainerTraits< CubicalComplex< TKSpace, TCellContainer > > |
struct | ContainerTraits< std::array< T, N > > |
Defines container traits for std::array<>. More... | |
struct | ContainerTraits< std::deque< T, Alloc > > |
Defines container traits for std::deque<>. More... | |
struct | ContainerTraits< std::forward_list< T, Alloc > > |
Defines container traits for std::forward_list<>. More... | |
struct | ContainerTraits< std::list< T, Alloc > > |
Defines container traits for std::list<>. More... | |
struct | ContainerTraits< std::map< Key, T, Compare, Alloc > > |
Defines container traits for std::map<>. More... | |
struct | ContainerTraits< std::multimap< Key, T, Compare, Alloc > > |
Defines container traits for std::multimap<>. More... | |
struct | ContainerTraits< std::multiset< T, Compare, Alloc > > |
Defines container traits for std::multiset<>. More... | |
struct | ContainerTraits< std::set< T, Compare, Alloc > > |
Defines container traits for std::set<>. More... | |
struct | ContainerTraits< std::unordered_map< Key, T, Hash, Pred, Alloc > > |
Defines container traits for std::unordered_map<>. More... | |
struct | ContainerTraits< std::unordered_multimap< Key, T, Hash, Pred, Alloc > > |
Defines container traits for std::unordered_multimap<>. More... | |
struct | ContainerTraits< std::unordered_multiset< Key, Hash, Pred, Alloc > > |
Defines container traits for std::unordered_multiset<>. More... | |
struct | ContainerTraits< std::unordered_set< Key, Hash, Pred, Alloc > > |
Defines container traits for std::unordered_set<>. More... | |
struct | ContainerTraits< std::vector< T, Alloc > > |
Defines container traits for std::vector<>. More... | |
class | ContourHelper |
Aim: a helper class to process sequences of points. More... | |
struct | ConvexCellComplex |
Aim: represents a d-dimensional complex in a d-dimensional space with the following properties and restrictions: More... | |
struct | ConvexHullCommonKernel |
Aim: the common part of all geometric kernels for computing the convex hull or Delaunay triangulation of a range of points. More... | |
struct | ConvexHullIntegralKernel |
Aim: a geometric kernel to compute the convex hull of digital points with integer-only arithmetic. More... | |
struct | ConvexHullRationalKernel |
Aim: a geometric kernel to compute the convex hull of floating points with integer-only arithmetic. Floating points are approximated with rational points with fixed precision (a given number of bits). All remaining computations are exact, as long as there is no overflow. More... | |
struct | ConvexityHelper |
Aim: Provides a set of functions to facilitate the computation of convex hulls and polytopes, as well as shortcuts to build cell complex representing a Delaunay complex. More... | |
struct | CorrectedNormalCurrentComputer |
Aim: Utility class to compute curvature measures induced by (1) a corrected normal current defined by a surface mesh with prescribed normals and (2) the standard Lipschitz-Killing invariant forms of area and curvatures. More... | |
struct | CorrectedNormalCurrentFormula |
Aim: A helper class that provides static methods to compute corrected normal current formulas of curvatures. More... | |
class | CountedConstPtrOrConstPtr |
Aim: Smart or simple const pointer on T . It can be a smart pointer based on reference counts or a simple pointer on T depending either on a boolean value given at construction or on the constructor used. In the first case, we will call this pointer object smart, otherwise we will call it simple. More... | |
class | CountedPtr |
Aim: Smart pointer based on reference counts. More... | |
class | CountedPtrOrPtr |
Aim: Smart or simple pointer on T. It can be a smart pointer based on reference counts or a simple pointer on T depending either on a boolean value given at construction or on the constructor used. In the first case, we will call this pointer object smart, otherwise we will call it simple. More... | |
class | CowPtr |
Aim: Copy on write shared pointer. More... | |
struct | CSinglePassIteratorArchetype |
An archetype of SingePassIterator. More... | |
struct | CubicalCellData |
class | CubicalComplex |
Aim: This class represents an arbitrary cubical complex living in some Khalimsky space. Cubical complexes are sets of cells of different dimensions related together with incidence relations. Two cells in a cubical complex are incident if and only if they are incident in the surrounding Khalimsky space. In other words, cubical complexes are defined here as subsets of Khalimsky spaces. More... | |
struct | CurvatureFromBinomialConvolverFunctor |
Aim: This class is a functor for getting the curvature of a binomial convolver. More... | |
class | CurvatureFromDCAEstimator |
class | CurvatureFromDSSEstimator |
class | CurvatureFromDSSLengthEstimator |
struct | CustomColors |
Custom style class redefining the pen color and the fill color. You may use Board2D::Color::None for transparent color. More... | |
struct | CustomColors3D |
struct | CustomFillColor |
Custom style class redefining the fill color. You may use Board2D::Color::None for transparent color. More... | |
struct | CustomPen |
Custom style class redefining the pen attributes. You may use Board2D::Color::None for transparent color. More... | |
struct | CustomPenColor |
Custom style class redefining the pen color. You may use Board2D::Color::None for transparent color. More... | |
struct | CustomStyle |
struct | CustomStyle3D |
Modifier class in a Display3D stream. Useful to choose your own style for a given class. Realizes the concept CDrawableWithDisplay3D. More... | |
class | DecoratorParametricCurveTransformation |
Aim: Implements a decorator for applying transformations to parametric curves. More... | |
class | DefaultConstImageRange |
Aim: model of CConstBidirectionalRangeFromPoint that adapts the domain of an image in order to iterate over the values associated to its domain points (in a read-only as well as a write-only manner). More... | |
class | DefaultImageRange |
Aim: model of CConstBidirectionalRangeFromPoint and CBidirectionalRangeWithWritableIteratorFromPoint that adapts the domain of an image in order to iterate over the values associated to its domain points (in a read-only as well as a write-only manner). More... | |
struct | DelaunayIntegralKernel |
Aim: a geometric kernel to compute the Delaunay triangulation of digital points with integer-only arithmetic. It casts lattice point into a higher dimensional space and computes its convex hull. Facets pointing toward the bottom form the simplices of the Delaunay triangulation. More... | |
struct | DelaunayRationalKernel |
Aim: a geometric kernel to compute the Delaunay triangulation of a range of floating points with integer-only arithmetic. Floating points are approximated with rational points with fixed precision (a given number of bits), which are cast in a higher dimensional space and lifted onto the "norm" paraboloid, as classically done when computing a Delaunay triangulation from a convex hull. All remaining computations are exact, as long as there is no overflow. More... | |
class | DepthFirstVisitor |
Aim: This class is useful to perform a depth-first exploration of a graph given a starting point or set (called initial core). More... | |
struct | DicomReader |
Aim: Import a 3D DICOM image from file series. More... | |
class | DigitalConvexity |
Aim: A helper class to build polytopes from digital sets and to check digital k-convexity and full convexity. More... | |
class | DigitalMetricAdapter |
Aim: simple adapter class which adapts any models of concepts::CMetricSpace to a model of concepts::CDigitalMetricSpace. More... | |
class | DigitalPlanePredicate |
Aim: Representing digital planes, which are digitizations of Euclidean planes, as point predicates. More... | |
class | DigitalSetBoundary |
Aim: A model of CDigitalSurfaceContainer which defines the digital surface as the boundary of a given digital set. More... | |
class | DigitalSetByAssociativeContainer |
Aim: A wrapper class around a STL associative container for storing sets of digital points within some given domain. More... | |
class | DigitalSetBySTLSet |
Aim: A container class for storing sets of digital points within some given domain. More... | |
class | DigitalSetBySTLVector |
Aim: Realizes the concept CDigitalSet by using the STL container std::vector. More... | |
struct | DigitalSetConverter |
Aim: Utility class to convert between types of sets. More... | |
class | DigitalSetDomain |
Aim: Constructs a domain limited to the given digital set. More... | |
class | DigitalSetFromMap |
Aim: An adapter for viewing an associative image container like ImageContainerBySTLMap as a simple digital set. This class is merely based on an aliasing pointer on the image, which must exists elsewhere. More... | |
class | DigitalSetInserter |
Aim: this output iterator class is designed to allow algorithms to insert points in the digital set. Using the assignment operator, even when dereferenced, causes the digital set to insert a point. More... | |
struct | DigitalSetSelector |
Aim: Automatically defines an adequate digital set type according to the hints given by the user. More... | |
class | DigitalShapesCSG |
Aim: Constructive Solid Geometry (CSG) between models of CDigitalBoundedShape and CDigitalOrientedShape Use CSG operation (union, intersection, minus) from a shape of Type ShapeA with one (or more) shapes of Type ShapeB. Can combine differents operations. Limitations: Since we don't have a class derived by all shapes, operations can be done by only one type of shapes. Use CSG of CSG to go beyond this limitation. More... | |
class | DigitalSurface |
Aim: Represents a set of n-1-cells in a nD space, together with adjacency relation between these cells. Therefore, a digital surface is a pure cubical complex (model of CCubicalComplex), made of k-cells, 0 <= k < n. This complex is generally not a manifold (i.e. a kind of surface), except when it has the property of being well-composed. More... | |
class | DigitalSurface2DSlice |
Aim: Represents a 2-dimensional slice in a DigitalSurface. In a sense, it is a 4-connected contour, open or not. To be valid, it must be connected to some digital surface and a starting surfel. More... | |
class | DigitalSurfaceConvolver |
class | DigitalSurfaceConvolver< TFunctor, TKernelFunctor, TKSpace, TDigitalKernel, 2 > |
class | DigitalSurfaceConvolver< TFunctor, TKernelFunctor, TKSpace, TDigitalKernel, 3 > |
class | DigitalSurfaceEmbedderWithNormalVectorEstimator |
Aim: Combines a digital surface embedder with a normal vector estimator to get a model of CDigitalSurfaceEmbedder and CWithGradientMap. (also default constructible, copy constructible, assignable). More... | |
class | DigitalSurfaceEmbedderWithNormalVectorEstimatorGradientMap |
class | DigitalSurfacePredicate |
Aim: A point predicate which tells whether a point belongs to the set of pointels of a given digital surface or not. More... | |
class | DigitalSurfaceRegularization |
Aim: Implements Digital Surface Regularization as described in [31]. More... | |
class | DigitalTopology |
Aim: Represents a digital topology as a couple of adjacency relations. More... | |
struct | DigitalTopologyTraits |
Aim: the traits classes for DigitalTopology types. More... | |
struct | DigitalTopologyTraits< MetricAdjacency< TSpace, 1 >, MetricAdjacency< TSpace, 2 >, 2 > |
Aim: Specialization of the traits classes for DigitalTopology types for any 2D Space, for topology (4,8). More... | |
struct | DigitalTopologyTraits< MetricAdjacency< TSpace, 1 >, MetricAdjacency< TSpace, 2 >, 3 > |
Aim: Specialization of the traits classes for DigitalTopology types for any 2D Space, for topology (6,18). More... | |
struct | DigitalTopologyTraits< MetricAdjacency< TSpace, 1 >, MetricAdjacency< TSpace, 3 >, 3 > |
Aim: Specialization of the traits classes for DigitalTopology types for any 2D Space, for topology (6,26). More... | |
struct | DigitalTopologyTraits< MetricAdjacency< TSpace, 2 >, MetricAdjacency< TSpace, 1 >, 2 > |
Aim: Specialization of the traits classes for DigitalTopology types for any 2D Space, for topology (8,4). More... | |
struct | DigitalTopologyTraits< MetricAdjacency< TSpace, 2 >, MetricAdjacency< TSpace, 1 >, 3 > |
Aim: Specialization of the traits classes for DigitalTopology types for any 2D Space, for topology (18,6). More... | |
struct | DigitalTopologyTraits< MetricAdjacency< TSpace, 3 >, MetricAdjacency< TSpace, 1 >, 3 > |
Aim: Specialization of the traits classes for DigitalTopology types for any 2D Space, for topology (26,6). More... | |
class | DirichletConditions |
Aim: A helper class to solve a system with Dirichlet boundary conditions. More... | |
class | DiscreteExteriorCalculus |
Aim: DiscreteExteriorCalculus represents a calculus in the dec package. This is the main structure in the dec package. This is used to describe the space on which the dec is build and to compute various operators. Once operators or kforms are created, this structure should not be modified. More... | |
class | DiscreteExteriorCalculusFactory |
Aim: This class provides static members to create DEC structures from various other DGtal structures. More... | |
class | DiscreteExteriorCalculusSolver |
Aim: This wraps a linear algebra solver around a discrete exterior calculus. More... | |
struct | Display2DFactory |
Factory for Display2D: More... | |
class | Display3D |
Aim: This semi abstract class defines the stream mechanism to display 3d primitive (like BallVector, DigitalSetBySTLSet, Object ...). The class Viewer3D and Board3DTo2D implement two different ways to display 3D objects. The first one (Viewer3D), permits an interactive visualisation (based on OpenGL ) and the second one (Board3dto2d) provides 3D visualisation from 2D vectorial display (based on the CAIRO library) More... | |
struct | Display3DFactory |
Factory for GPL Display3D: More... | |
class | DistanceBreadthFirstVisitor |
Aim: This class is useful to perform an exploration of a graph given a starting point or set (called initial core) and a distance criterion. More... | |
class | DistanceFromDCAEstimator |
class | DistanceFunctorFromPoint |
class | DistanceTransformation |
Aim: Implementation of the linear in time distance transformation for separable metrics. More... | |
class | DomainAdjacency |
Aim: Given a domain and an adjacency, limits the given adjacency to the specified domain for all adjacency and neighborhood computations. More... | |
struct | DrawableWithBoard2D |
struct | DrawableWithBoard3DTo2D |
struct | DrawableWithDisplay3D |
struct | DrawWithBoard3DTo2DModifier |
Base class specifying the methods for classes which intend to modify a Viewer3D stream. More... | |
struct | DrawWithBoardModifier |
struct | DrawWithDisplay3DModifier |
Base class specifying the methods for classes which intend to modify a Viewer3D stream. More... | |
struct | DrawWithViewer3DModifier |
Base class specifying the methods for classes which intend to modify a Viewer3D stream. More... | |
class | DSLSubsegment |
Aim: Given a Digital Straight line and two endpoints A and B on this line, compute the minimal characteristics of the digital subsegment [AB] in logarithmic time. Two algorithms are implemented: one is based on the local computation of lower and upper convex hulls, the other is based on a dual transformation and uses the Farey fan. Implementation requires that the DSL lies in the first octant (0 <= a <= b). More... | |
class | DSSLengthEstimator |
Aim: a model of CGlobalCurveEstimator that segments the digital curve into DSS and computes the length of the resulting (not uniquely defined) polygon. More... | |
class | DSSLengthLessEqualFilter |
class | DSSMuteFilter |
struct | DummyObject |
struct | DynamicBidirectionalSegmentComputer |
struct | DynamicSegmentComputer |
class | EhrhartPolynomial |
Aim: This class implements the class Ehrhart Polynomial which is related to lattice point enumeration in bounded lattice polytopes. More... | |
class | EigenDecomposition |
Aim: This class provides methods to compute the eigen decomposition of a matrix. Its objective is to replace a specialized matrix library when none are available. More... | |
struct | EigenLinearAlgebraBackend |
Aim: Provide linear algebra backend using Eigen dense and sparse matrix as well as dense vector. 6 linear solvers available: More... | |
class | Ellipse2D |
Aim: Model of the concept StarShaped represents any ellipse in the plane. More... | |
class | EllipticHelix |
Aim: Implement a parametric curve – elliptic helix. More... | |
class | EstimatorCache |
Aim: this class adapts any local surface estimator to cache the estimated values in a associative container (Surfel <-> estimated value). More... | |
class | EuclideanShapesCSG |
Aim: Constructive Solid Geometry (CSG) between models of CEuclideanBoundedShape and CEuclideanOrientedShape Use CSG operation (union, intersection, minus) from a shape of Type ShapeA with one (or more) shapes of Type ShapeB. Can combine differents operations. Limitations: Since we don't have a class derived by all shapes, operations can be done by only one type of shapes. Use CSG of CSG to go beyond this limitation. More... | |
class | ExactPredicateLpPowerSeparableMetric |
Aim: implements weighted separable l_p metrics with exact predicates. More... | |
class | ExactPredicateLpPowerSeparableMetric< TSpace, 2, TPromoted > |
class | ExactPredicateLpSeparableMetric |
Aim: implements separable l_p metrics with exact predicates. More... | |
class | ExactPredicateLpSeparableMetric< TSpace, 2, TRawValue > |
class | Expander |
Aim: This class is useful to visit an object by adjacencies, layer by layer. More... | |
class | ExplicitDigitalSurface |
Aim: A model of CDigitalSurfaceContainer which defines the digital surface as connected surfels. The shape is determined by a predicate telling whether a given surfel belongs or not to the shape boundary. Compute once the boundary of the surface with a tracking. More... | |
class | Filtered2x2DetComputer |
Aim: Class that provides a way of computing the sign of the determinant of a 2x2 matrix from its four coefficients, ie. More... | |
class | Flower2D |
Aim: Model of the concept StarShaped represents any flower with k-petals in the plane. More... | |
class | FMM |
Aim: Fast Marching Method (FMM) for nd distance transforms. More... | |
struct | ForwardCategory |
struct | ForwardSegmentComputer |
class | FP |
Aim: Computes the faithful polygon (FP) of a range of 4/8-connected 2D Points. More... | |
class | FPLengthEstimator |
Aim: a model of CGlobalCurveEstimator that computes the length of a digital curve using its FP (faithful polygon) More... | |
class | FrechetShortcut |
Aim: On-line computation Computation of the longest shortcut according to the Fréchet distance for a given error. See related article: Sivignon, I., (2011). A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance. DGCI 2011. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-19867-0_28. More... | |
class | FreemanChain |
class | FrontInsertionSequenceToStackAdapter |
Aim: This class implements a dynamic adapter to an instance of a model of front insertion sequence in order to get a stack interface. This class is a model of CStack. More... | |
class | FunctorOnCells |
Aim: Convert a functor on Digital Point to a Functor on Khalimsky Cell. More... | |
class | GaussDigitizer |
Aim: A class for computing the Gauss digitization of some Euclidean shape, i.e. its intersection with some \( h_1 Z \times h_2 Z
\times \cdots \times h_n Z \). Note that the real point (0,...,0) is mapped onto the digital point (0,...,0). More... | |
struct | GenericReader |
Aim: Provide a mechanism to load with the bestloader according to an image (2D or 3D) filename (by parsing the extension). More... | |
struct | GenericReader< TContainer, 2, DGtal::uint32_t > |
struct | GenericReader< TContainer, 2, TValue > |
struct | GenericReader< TContainer, 3, DGtal::uint32_t > |
struct | GenericReader< TContainer, 3, DGtal::uint64_t > |
struct | GenericReader< TContainer, 3, TValue > |
struct | GenericWriter |
Aim: Provide a mechanism to save image (2D or 3D) into file with the best saver loader according to an filename (by parsing the extension). More... | |
struct | GenericWriter< TContainer, 2, DGtal::Color, TFunctor > |
struct | GenericWriter< TContainer, 2, TValue, TFunctor > |
struct | GenericWriter< TContainer, 2, unsigned char, TFunctor > |
struct | GenericWriter< TContainer, 3, DGtal::uint64_t, TFunctor > |
struct | GenericWriter< TContainer, 3, TValue, TFunctor > |
struct | GenericWriter< TContainer, 3, unsigned char, TFunctor > |
class | GeodesicsInHeat |
This class implements [41] on polygonal surfaces (using Discrete differential calculus on polygonal surfaces). More... | |
class | GradientColorMap |
Aim: This class template may be used to (linearly) convert scalar values in a given range into a color in a gradient defined by two or more colors. More... | |
class | GraphVisitorRange |
Aim: Transforms a graph visitor into a single pass input range. More... | |
class | GrayscaleColorMap |
Aim: This class template may be used to (linearly) convert scalar values in a given range into gray levels. More... | |
class | GreedySegmentation |
Aim: Computes the greedy segmentation of a range given by a pair of ConstIterators. The last element of a given segment is the first one one of the next segment. More... | |
class | GridCurve |
Aim: describes, in a cellular space of dimension n, a closed or open sequence of signed d-cells (or d-scells), d being either equal to 1 or (n-1). More... | |
struct | H5DSpecializations |
Aim: implements HDF5 reading and writing for specialized type T. More... | |
struct | H5DSpecializations< TImageFactory, DGtal::int32_t > |
Aim: implements HDF5 reading and writing for specialized type DGtal::int32_t. More... | |
struct | H5DSpecializations< TImageFactory, DGtal::int64_t > |
Aim: implements HDF5 reading and writing for specialized type DGtal::int64_t. More... | |
struct | H5DSpecializations< TImageFactory, DGtal::uint8_t > |
Aim: implements HDF5 reading and writing for specialized type DGtal::uint8_t. More... | |
struct | H5DSpecializations< TImageFactory, double > |
Aim: implements HDF5 reading and writing for specialized type double. More... | |
class | HalfEdgeDataStructure |
Aim: This class represents an half-edge data structure, which is a structure for representing the topology of a combinatorial 2-dimensional surface or an embedding of a planar graph in the plane. It does not store any geometry. As a minimal example, these lines of code build two triangles connected by the edge {1,2}. More... | |
struct | HDF5Reader |
Aim: Import a HDF5 file. More... | |
struct | HDF5Writer |
Aim: Export an Image with the HDF5 format. More... | |
class | Histogram |
Aim: Represents a typical histogram in statistics, which is a discrete estimate of the probability distribution of a continuous variable. More... | |
class | HueShadeColorMap |
Aim: This class template may be used to (linearly) convert scalar values in a given range into a color in a cyclic hue shade colormap, maybe aka rainbow color map. This color map is suitable, for example, to colorize distance functions. By default, only one hue cycle is used. More... | |
class | HyperRectDomain |
Aim: Parallelepidec region of a digital space, model of a 'CDomain'. More... | |
class | HyperRectDomain_Iterator |
Iterator for HyperRectDomain. More... | |
class | HyperRectDomain_ReverseIterator |
Reverse iterator for HyperRectDomain. More... | |
class | HyperRectDomain_subIterator |
class | Image |
Aim: implements association bewteen points lying in a digital domain and values. More... | |
class | ImageAdapter |
Aim: implements an image adapter with a given domain (i.e. a subdomain) and 3 functors : g for domain, f for accessing point values and f-1 for writing point values. More... | |
class | ImageCache |
Aim: implements an images cache with 'read and write' policies. More... | |
class | ImageCacheReadPolicyFIFO |
Aim: implements a 'FIFO' read policy cache. More... | |
class | ImageCacheReadPolicyLAST |
Aim: implements a 'LAST' read policy cache. More... | |
class | ImageCacheWritePolicyWB |
Aim: implements a 'WB (Write-back or Write-behind)' write policy cache. More... | |
class | ImageCacheWritePolicyWT |
Aim: implements a 'WT (Write-through)' write policy cache. More... | |
class | ImageContainerByITKImage |
Aim: implements a model of CImageContainer using a ITK Image. More... | |
class | ImageContainerBySTLMap |
class | ImageContainerBySTLVector |
class | ImageFactoryFromHDF5 |
Aim: implements a factory from an HDF5 file. More... | |
class | ImageFactoryFromImage |
Aim: implements a factory to produce images from a "bigger/original" one according to a given domain. More... | |
struct | ImageFromSet |
Aim: Define utilities to convert a digital set into an image. More... | |
class | ImageLinearCellEmbedder |
Aim: a cellular embedder for images. (default constructible, copy constructible, assignable). Model of CCellEmbedder. More... | |
struct | ImageSelector |
Aim: Automatically defines an adequate image type according to the hints given by the user. More... | |
class | ImageToConstantFunctor |
class | ImplicitBall |
Aim: model of CEuclideanOrientedShape and CEuclideanBoundedShape concepts to create a ball in nD.. More... | |
class | ImplicitDigitalSurface |
Aim: A model of CDigitalSurfaceContainer which defines the digital surface as the boundary of an implicitly define shape. Compute once the boundary of the surface with a tracking. More... | |
class | ImplicitFunctionDiff1LinearCellEmbedder |
Aim: a cellular embedder for implicit functions, (default constructible, copy constructible, assignable). Model of CCellEmbedder and CWithGradientMap. More... | |
class | ImplicitFunctionDiff1LinearCellEmbedderGradientMap |
Forward declaration. More... | |
class | ImplicitFunctionLinearCellEmbedder |
Aim: a cellular embedder for implicit functions, (default constructible, copy constructible, assignable). Model of CCellEmbedder. More... | |
class | ImplicitHyperCube |
Aim: model of CEuclideanOrientedShape and CEuclideanBoundedShape concepts to create an hypercube in nD.. More... | |
class | ImplicitNorm1Ball |
Aim: model of CEuclideanOrientedShape and CEuclideanBoundedShape concepts to create a ball for the L_1 norm in nD. More... | |
class | ImplicitPolynomial3Shape |
Aim: model of CEuclideanOrientedShape concepts to create a shape from a polynomial. More... | |
class | ImplicitRoundedHyperCube |
Aim: model of CEuclideanOrientedShape and CEuclideanBoundedShape concepts to create a rounded hypercube in nD.. More... | |
class | IndexedDigitalSurface |
Aim: Represents a digital surface with the topology of its dual surface. Its aim is to mimick the standard DigitalSurface, but to optimize its traversal and topology services. The idea is simply to number all its vertices (ie surfels), arcs, and faces and to store its topology with an half-edge data structure. It is essentially a PolygonalSurface but with services specific to DigitalSurface, like a tracker, a DigitalSurfaceContainer, etc. In theory, it can replace a DigitalSurface in many algorithms, and is more efficient if you need to do a lot of traversal on it (like many k-ring operations). More... | |
class | IndexedListWithBlocks |
Aim: Represents a mixed list/array structure which is useful in some context. It is essentially a list of blocks. More... | |
class | InexactPredicateLpSeparableMetric |
Aim: implements separable l_p metrics with approximated predicates. More... | |
class | InfiniteNumberException |
class | InGeneralizedDiskOfGivenRadius |
Aim: This class implements an orientation functor that provides a way to determine the position of a given point with respect to the unique circle passing by the same two given points and whose radius and orientation is given. More... | |
class | InHalfPlaneBy2x2DetComputer |
Aim: Class that implements an orientation functor, ie. it provides a way to compute the orientation of three given 2d points. More precisely, it returns: More... | |
class | InHalfPlaneBySimple3x3Matrix |
Aim: Class that implements an orientation functor, ie. it provides a way to compute the orientation of three given 2d points. More precisely, it returns: More... | |
class | InputException |
class | InputIteratorWithRankOnSequence |
Aim: Useful to create an iterator that returns a pair (value,rank) when visiting a sequence. The sequence is smartly copied within the iterator. Hence, the given sequence need not to persist during the visit. Since it is only an input sequence, it is not necessary to give a valid sequence when creating the end() iterator. More... | |
class | IntegerComputer |
Aim: This class gathers several types and methods to make computation with integers. More... | |
struct | IntegerConverter |
----------— INTEGER/POINT CONVERSION SERVICES -----------------— More... | |
struct | IntegerConverter< dim, DGtal::BigInteger > |
struct | IntegerConverter< dim, DGtal::int32_t > |
struct | IntegerConverter< dim, DGtal::int64_t > |
class | IntegerSequenceIterator |
Aim: It is a simple class that mimics a (non mutable) iterator over integers. You can increment it, decrement it, displace it, compare it, etc. It is useful if you have a collection of consecutive integers, and you wish to create an iterator over it. It is used in the class TriangulatedSurface for example, since vertices are numbers from 0 to nbVertices - 1. More... | |
class | IntegralIntervals |
Aim: More... | |
class | IntegralInvariantCovarianceEstimator |
Aim: This class implement an Integral Invariant estimator which computes for each surfel the covariance matrix of the intersection of the shape with a ball of given radius centered on the surfel. More... | |
class | IntegralInvariantVolumeEstimator |
Aim: This class implement an Integral Invariant estimator which computes for each surfel the volume of the intersection of the shape with a ball of given radius centered on the surfel. More... | |
struct | IntersectionTargetTrait |
Aim: A class for intersection target used for voxelization. More... | |
class | IOException |
struct | IsAPointVector |
Type trait to check if a given type is a PointVector. More... | |
struct | IsAPointVector< PointVector< dim, TEuclideanRing, TContainer > > |
Specialization of IsAPointVector for a PointVector. More... | |
struct | IsArithmeticConversionValid |
Helper to determine if an arithmetic operation between two given types has a valid result type (ie is valid). More... | |
struct | IsArithmeticConversionValid< T, U, typename std::conditional< false, ArithmeticConversionType< T, U >, void >::type > |
Specialization when arithmetic operation between the two given type is valid. More... | |
struct | IsAssociativeContainer |
struct | IsCirculator |
Aim: Checks whether type IC is a circular or a classical iterator. Static value set to 'true' for a circulator, 'false' otherwise. More... | |
struct | IsContainer |
struct | IsMultipleAssociativeContainer |
struct | IsOrderedAssociativeContainer |
struct | IsPairAssociativeContainer |
struct | IsSequenceContainer |
struct | IsSimpleAssociativeContainer |
struct | IsUniqueAssociativeContainer |
struct | IsUnorderedAssociativeContainer |
class | IteratorAdapter |
This class adapts any lvalue iterator so that operator* returns a member on the element pointed to by the iterator, instead the element itself. More... | |
struct | IteratorCirculatorTraits |
Aim: Provides nested types for both iterators and circulators: Type, Category, Value, Difference, Pointer and Reference. More... | |
struct | IteratorCirculatorTraits< T * > |
struct | IteratorCirculatorTraits< T const * > |
struct | IteratorCirculatorType |
Aim: Provides the type of IC as a nested type: either IteratorType or CirculatorType. More... | |
class | IteratorCompletion |
Aim: Class that uses CRTP to add reverse iterators and ranges to a derived class. More... | |
class | IteratorCompletionTraits |
Aim: Traits that must be specialized for each IteratorCompletion derived class. More... | |
class | IteratorCompletionTraits< ArrayImageAdapter< TArrayIterator, TDomain > > |
[IteratorCompletionTraits] More... | |
struct | IteratorType |
struct | ITKDicomReader |
Aim: Import a 2D/3D DICOM Image from file series. More... | |
struct | ITKIOTrait |
Aim: Provide type trait for ITK reader and ITK writer. More... | |
struct | ITKIOTrait< bool > |
struct | ITKReader |
Aim: Import a 2D/3D Image using the ITK formats. More... | |
struct | ITKWriter |
Export a 2D/3D Image using the ITK formats. More... | |
struct | ITKWriter< ImageContainerByITKImage< TDomain, TValue >, TFunctor > |
class | IVector |
class | IVector< T, TAlloc, true > |
class | KanungoNoise |
Aim: From a point predicate (model of concepts::CPointPredicate), this class constructs another point predicate as a noisy version of the input one. More... | |
class | KForm |
Aim: KForm represents discrete kforms in the dec package. More... | |
struct | KhalimskyCell |
Represents an (unsigned) cell in a cellular grid space by its Khalimsky coordinates. More... | |
struct | KhalimskyPreCell |
Represents an unsigned cell in an unbounded cellular grid space by its Khalimsky coordinates. More... | |
class | KhalimskyPreSpaceND |
Aim: This class is a model of CPreCellularGridSpaceND. It represents the cubical grid as a cell complex, whose cells are defined as an array of integers. The topology of the cells is defined by the parity of the coordinates (even: closed, odd: open). More... | |
class | KhalimskySpaceND |
Aim: This class is a model of CCellularGridSpaceND. It represents the cubical grid as a cell complex, whose cells are defined as an array of integers. The topology of the cells is defined by the parity of the coordinates (even: closed, odd: open). More... | |
class | KhalimskySpaceNDHelper |
Internal class of KhalimskySpaceND that provides some optimizations depending on the space type. More... | |
class | Knot_3_1 |
Aim: Implement a parametrized knot 3, 1. More... | |
class | Knot_3_2 |
Aim: Implement a parametrized knot 3, 2. More... | |
class | Knot_4_1 |
Aim: Implement a parametrized knot 4, 1. More... | |
class | Knot_4_3 |
Aim: Implement a parametrized knot 4, 3. More... | |
class | Knot_5_1 |
Aim: Implement a parametrized knot 5, 1. More... | |
class | Knot_5_2 |
Aim: Implement a parametrized knot 5, 2. More... | |
class | Knot_6_2 |
Aim: Implement a parametrized knot 6, 2. More... | |
class | Knot_7_4 |
Aim: Implement a parametrized knot 7, 4. More... | |
class | L1LengthEstimator |
Aim: a simple model of CGlobalCurveEstimator that compute the length of a curve using the l_1 metric (just add 1/h for every step). More... | |
class | L1LocalDistance |
Aim: Class for the computation of the L1-distance at some point p, from the available distance values of some points lying in the 1-neighborhood of p (ie. points at a L1-distance to p equal to 1). More... | |
class | L2FirstOrderLocalDistance |
Aim: Class for the computation of the Euclidean distance at some point p, from the available distance values of some points lying in the 1-neighborhood of p (ie. points at a L1-distance to p equal to 1). More... | |
class | L2FirstOrderLocalDistanceFromCells |
Aim: Class for the computation of the Euclidean distance at some point p, from the available distance values in the neighborhood of p. Contrary to L2FirstOrderLocalDistance, the distance values are not available from the points adjacent to p but instead from the (d-1)-cells lying between p and these points. More... | |
class | L2SecondOrderLocalDistance |
Aim: Class for the computation of the Euclidean distance at some point p, from the available distance values of some points lying in the neighborhood of p, such that only one of their coordinate differ from the coordinates of p by at most two. More... | |
class | LabelledMap |
Aim: Represents a map label -> data, where the label is an integer between 0 and a constant L-1. It is based on a binary coding of labels and a mixed list/array structure. The assumption is that the number of used labels is much less than L. The objective is to minimize the memory usage. More... | |
class | Labels |
Aim: Stores a set of labels in {O..L-1} as a sequence of bits. More... | |
class | LagrangeInterpolation |
Aim: This class implements Lagrange basis functions and Lagrange interpolation. More... | |
class | LambdaMST2D |
Aim: Simplify creation of Lambda MST tangent estimator. More... | |
class | LambdaMST2DEstimator |
class | LambdaMST3D |
Aim: Simplify creation of Lambda MST tangent estimator. More... | |
class | LambdaMST3DBy2D |
Aim: Simplify creation of Lambda MST tangent estimator. More... | |
class | LambdaMST3DBy2DEstimator |
class | LambdaMST3DEstimator |
class | LatticePolytope2D |
Aim: Represents a 2D polytope, i.e. a convex polygon, in the two-dimensional digital plane. The list of points must follow the clockwise ordering. More... | |
class | LatticeSetByIntervals |
Aim: More... | |
class | Lemniscate2D |
Aim: Model of the concept StarShaped represents a lemniscate. More... | |
class | LighterSternBrocot |
Aim: The Stern-Brocot tree is the tree of irreducible fractions. This class allows to construct it progressively and to navigate within fractions in O(1) time for most operations. It is well known that the structure of this tree is a coding of the continued fraction representation of fractions. More... | |
class | LightExplicitDigitalSurface |
Aim: A model of CDigitalSurfaceContainer which defines the digital surface as connected surfels. The shape is determined by a predicate telling whether a given surfel belongs or not to the shape boundary. The whole boundary is not precomputed nor stored. You may use an iterator to visit it. More... | |
class | LightImplicitDigitalSurface |
Aim: A model of CDigitalSurfaceContainer which defines the digital surface as the boundary of an implicitly define shape. The whole boundary is not precomputed nor stored. You may use an iterator to visit it. More... | |
class | LightSternBrocot |
Aim: The Stern-Brocot tree is the tree of irreducible fractions. This class allows to construct it progressively and to navigate within fractions in O(1) time for most operations. It is well known that the structure of this tree is a coding of the continued fraction representation of fractions. More... | |
struct | LinearAlgebra |
Aim: A utility class that contains methods to perform integral linear algebra. More... | |
struct | Linearizer |
Aim: Linearization and de-linearization interface for domains. More... | |
struct | Linearizer< HyperRectDomain< TSpace >, TStorageOrder > |
Aim: Linearization and de-linearization interface for HyperRectDomain. More... | |
class | LinearOperator |
Aim: LinearOperator represents discrete linear operator between discrete kforms in the DEC package. More... | |
class | LInfLocalDistance |
Aim: Class for the computation of the LInf-distance at some point p, from the available distance values of some points lying in the 1-neighborhood of p (ie. points at a L1-distance to p equal to 1). More... | |
class | LocalEstimatorFromSurfelFunctorAdapter |
Aim: this class adapts any local functor on digital surface element to define a local estimator. This class is model of CDigitalSurfaceLocalEstimator. More... | |
class | LOG2 |
class | LOG2< 1 > |
class | LOG2< 2 > |
struct | LongvolReader |
Aim: implements methods to read a "Longvol" file format (with DGtal::uint64_t value type). More... | |
struct | LongvolWriter |
Aim: Export a 3D Image using the Longvol formats (volumetric image with DGtal::uint64_t value type). More... | |
class | LpMetric |
Aim: implements l_p metrics. More... | |
struct | MapAssociativeCategory |
class | MaximalSegmentSliceEstimation |
Aim: More... | |
class | MeaningfulScaleAnalysis |
Aim: This class implements different methods used to define the meaningful scale analysis as proposed in [65] . In particular, it uses the Profile class to represent a multi-scale profile and to compute a meaningful scale. It also permits to get a noise estimation from the given profile. More... | |
class | Measure |
Aim: Implements a simple measure computation (in the Lesbegue sens) of a set. In dimension 2, it corresponds to the area of the set, to the volume in dimension 3,... More... | |
class | MeasureOfStraightLines |
The aim of this class is to compute the measure in the Lebesgues sense of the set of straight lines associated to domains defined as polygons in the (a,b)-parameter space. This parameter space maps the line $ax-y+b=0$ to the point $(a,b)$. More... | |
class | MelkmanConvexHull |
Aim: This class implements the on-line algorithm of Melkman for the computation of the convex hull of a simple polygonal line (without self-intersection) [Melkman, 1987: [87]]. More... | |
class | MemoryException |
class | Mesh |
Aim: This class is defined to represent a surface mesh through a set of vertices and faces. By using the default constructor, the mesh does not store any color information (it can be changed by setting the default constructor parameter saveFaceColor to 'true'). More... | |
class | MeshHelpers |
Aim: Static class that provides builder and converters between meshes. More... | |
struct | MeshReader |
Aim: Defined to import OFF and OFS surface mesh. It allows to import a Mesh object and takes into accouts the optional color faces. More... | |
class | MeshVoxelizer |
Aim: A class for computing the digitization of a triangle or a Mesh. More... | |
struct | MeshWriter |
Aim: Export a Mesh (Mesh object) in different format as OFF and OBJ). More... | |
class | MetricAdjacency |
Aim: Describes digital adjacencies in digital spaces that are defined with the 1-norm and the infinity-norm. More... | |
class | MLPLengthEstimator |
Aim: a model of CGlobalCurveEstimator that computes the length of a digital curve using its MLP (given by the FP) More... | |
class | ModuloComputer |
implements basic functions on modular arithmetic. More... | |
class | Morton |
Aim: Implements the binary Morton code construction in nD. More... | |
class | MostCenteredMaximalSegmentEstimator |
Aim: A model of CLocalCurveGeometricEstimator that assigns to each element of a (sub)range a quantity estimated from the most centered maximal segment passing through this element. More... | |
class | MPolynomial |
Aim: Represents a multivariate polynomial, i.e. an element of \( K[X_0, ..., X_{n-1}] \), where K is some ring or field. More... | |
class | MPolynomial< 0, TRing, TAlloc > |
Aim: Specialization of MPolynomial for degree 0. More... | |
class | MPolynomialDerivativeComputer |
class | MPolynomialDerivativeComputer< 0, 0, Ring, Alloc > |
class | MPolynomialDerivativeComputer< 0, n, Ring, Alloc > |
class | MPolynomialDerivativeComputer< N, 0, Ring, Alloc > |
class | MPolynomialEvaluator |
class | MPolynomialEvaluator< 1, TRing, TAlloc, TX > |
class | MPolynomialEvaluatorImpl |
class | MPolynomialEvaluatorImpl< 1, TRing, TOwner, TAlloc, TX > |
struct | MPolynomialGrammar |
class | MPolynomialReader |
Aim: This class converts a string polynomial expression in a multivariate polynomial. More... | |
struct | MultimapAssociativeCategory |
struct | MultipleAssociativeCategory |
struct | MultisetAssociativeCategory |
class | MultiStatistics |
Aim: This class stores a set of sample values for several variables and can then compute different statistics, like sample mean, sample variance, sample unbiased variance, etc. More... | |
class | Naive3DDSSComputer |
Aim: Dynamic recognition of a 3d-digital straight segment (DSS) More... | |
class | NaiveDSL |
Aim: This class is an alias of ArithmeticalDSS for naive DSL. It represents a naive digital straight line (DSL), ie. the set of digital points \( (x,y) \in \mathbb{Z}^2 \) such that \( \mu \leq ax - by < \mu + \omega \) with \( a,b,\mu,\omega \in \mathbb{Z} \), \( \gcd(a,b) = 1 \) and \( \omega = \max(|a|,|b|) \). Note that any DSL such that \( \omega = \max(|a|,|b|) \) is simply 8-connected. More... | |
class | NaiveDSS8 |
Aim: This class represents a standard digital straight segment (DSS), ie. the sequence of simply 8-connected digital points contained in a naive digital straight line (DSL) between two points of it. This class is an alias of ArithmeticalDSS. More... | |
class | NaiveParametricCurveDigitizer3D |
Aim: Digitization of 3D parametric curves. This method produces, for good parameters step and k_next, a 26-connected digital curves obtained from a digitization process of 3D parametric curves. More... | |
struct | Negate |
struct | Negate< TagFalse > |
struct | Negate< TagTrue > |
class | NeighborhoodConvexityAnalyzer |
Aim: A class that models a \( (2k+1)^d \) neighborhood and that provides services to analyse the convexity properties of a digital set within this neighborhood. More... | |
class | NGon2D |
Aim: Model of the concept StarShaped represents any regular k-gon in the plane. More... | |
struct | NormalCycleComputer |
Aim: Utility class to compute curvatures measures induced by (1) the normal cycle induced by a SurfaceMesh, (2) the standard Lipschitz-Killing invariant forms of area and curvatures. More... | |
struct | NormalCycleFormula |
Aim: A helper class that provides static methods to compute normal cycle formulas of curvatures. More... | |
class | NormalFromDCAEstimator |
class | NormalVectorEstimatorLinearCellEmbedder |
Aim: model of cellular embedder for normal vector estimators on digital surface, (default constructible, copy constructible, assignable). More... | |
struct | NotContainerCategory |
struct | NumberTraits |
Aim: The traits class for all models of Cinteger. More... | |
struct | NumberTraitsImpl |
Aim: The traits class for all models of Cinteger (implementation) More... | |
struct | NumberTraitsImpl< DGtal::BigInteger, Enable > |
Specialization of NumberTraitsImpl for DGtal::BigInteger. More... | |
struct | NumberTraitsImpl< T, typename std::enable_if< std::is_floating_point< T >::value >::type > |
Specialization of NumberTraitsImpl for fundamental floating-point types. More... | |
struct | NumberTraitsImpl< T, typename std::enable_if< std::is_integral< T >::value >::type > |
Specialization of NumberTraitsImpl for fundamental integer types. More... | |
class | Object |
Aim: An object (or digital object) represents a set in some digital space associated with a digital topology. More... | |
class | OneBalancedWordComputer |
Aim: More... | |
class | OneItemOutputIterator |
Aim: model of output iterator, ie incrementable and writable iterator, which only stores in a variable the last assigned item. More... | |
struct | OpInSTLContainers |
struct | OpInSTLContainers< Container, std::reverse_iterator< typename Container::iterator > > |
struct | OppositeDuality |
struct | OppositeDuality< DUAL > |
struct | OppositeDuality< PRIMAL > |
class | OrderedAlphabet |
Aim: Describes an alphabet over an interval of (ascii) letters, where the lexicographic order can be changed (shifted, reversed, ...). Useful for the arithmetic minimum length polygon (AMLP). More... | |
struct | OrderedAssociativeCategory |
class | OrderedLinearRegression |
Description of class 'OrderedLinearRegression'. More... | |
class | OutputIteratorAdapter |
Aim: Adapts an output iterator i with a unary functor f, both given at construction, so that the element pointed to by i is updated with a given value through f. More... | |
class | OwningOrAliasingPtr |
Aim: This class describes a smart pointer that is, given the constructor called by the user, either an alias pointer on existing data or an owning pointer on a copy. More... | |
struct | PairAssociativeCategory |
class | ParallelStrip |
Aim: A parallel strip in the space is the intersection of two parallel half-planes such that each half-plane includes the other. More... | |
struct | Parameters |
struct | ParameterValue |
class | ParametricShapeArcLengthFunctor |
Aim: implements a functor that estimates the arc length of a paramtric curve. More... | |
class | ParametricShapeCurvatureFunctor |
Aim: implements a functor that computes the curvature at a given point of a parametric shape. More... | |
class | ParametricShapeTangentFunctor |
Aim: implements a functor that computes the tangent vector at a given point of a parametric shape. More... | |
class | ParDirCollapse |
Aim: Implements thinning algorithms in cubical complexes. The implementation supports any model of cubical complex, for instance a DGtal::CubicalComplex< KhalimskySpaceND< 3, int > >. Three approaches are provided. The first—ParDirCollapse—bases on directional collapse of free pairs of faces. Second—CollapseSurface—is an extension of ParDirCollapse such that faces of dimension one lower than the dimension of the complex are kept. The last approach —CollapseIsthmus—is also an extension of ParDirCollapse such that faces of dimension one lower than the complex are preserved when they do not contain free faces of dimension two lower than the complex. Paper: Chaussard, J. and Couprie, M., Surface Thinning in 3D Cubical Complexes, Combinatorial Image Analysis, (2009) More... | |
class | Pattern |
Aim: This class represents a pattern, i.e. the path between two consecutive upper leaning points on a digital straight line. More... | |
struct | PGMReader |
Aim: Import a 2D or 3D using the Netpbm formats (ASCII mode). More... | |
struct | PGMWriter |
Aim: Export a 2D and a 3D Image using the Netpbm PGM formats (ASCII mode). More... | |
class | PlaneProbingDigitalSurfaceLocalEstimator |
Aim: Adapt a plane-probing estimator on a digital surface to estimate normal vectors. More... | |
class | PlaneProbingHNeighborhood |
Aim: Represent a way to probe the H-neighborhood. More... | |
class | PlaneProbingNeighborhood |
Aim: A base virtual class that represents a way to probe a neighborhood, used in the plane probing based estimators, see DGtal::PlaneProbingTetrahedronEstimator or DGtal::PlaneProbingParallelepipedEstimator. More... | |
class | PlaneProbingParallelepipedEstimator |
Aim: More... | |
class | PlaneProbingR1Neighborhood |
Aim: Represent a way to probe the R-neighborhood, with the R1 optimization, see [103] for details. More... | |
class | PlaneProbingRNeighborhood |
Aim: Represent a way to probe the R-neighborhood. More... | |
class | PlaneProbingTetrahedronEstimator |
Aim: A class that locally estimates a normal on a digital set using only a predicate "does a point x belong to the digital set or not?". More... | |
struct | PointListReader |
Aim: Implements method to read a set of points represented in each line of a file. More... | |
class | PointVector |
Aim: Implements basic operations that will be used in Point and Vector classes. More... | |
class | PolygonalCalculus |
Implements differential operators on polygonal surfaces from [45]. More... | |
class | PolygonalSurface |
Aim: Represents a polygon mesh, i.e. a 2-dimensional combinatorial surface whose faces are (topologically at least) simple polygons. The topology is stored with a half-edge data structure. This object stored the positions of vertices in space. If you need further data attached to the surface, you may use property maps (see PolygonalSurface::makeVertexMap ). More... | |
class | POW |
class | POW< X, 0 > |
class | POW< X, 1 > |
class | PowerMap |
Aim: Implementation of the linear in time Power map construction. More... | |
struct | PPMReader |
Aim: Import a 2D or 3D using the Netpbm formats (ASCII mode). More... | |
struct | PPMWriter |
Aim: Export a 2D and a 3D Image using the Netpbm PPM formats (ASCII mode). More... | |
class | PreCellDirectionIterator |
This class is useful for looping on all "interesting" coordinates of a pre-cell. More... | |
class | PredicateFromOrientationFunctor2 |
Aim: Small adapter to models of COrientationFunctor2. It is a model of concepts::CPointPredicate. It is also a ternary predicate on points, useful for basic geometric tasks such as convex hull computation. More... | |
class | Preimage2D |
Aim: Computes the preimage of the 2D Euclidean shapes crossing a sequence of n straigth segments in O(n), with the algorithm of O'Rourke (1981). More... | |
class | Profile |
Aim: This class can be used to represent a profile (PX, PY) defined from an input set of samples (Xi, Yi). For all sample (Xk, Yk) having the same value Xk, the associated value PY is computed (by default) by the mean of the values Yk. Note that other definitions can be used (MAX, MIN or MEDIAN). Internally each sample abscissa is an instance of DGtal::Statistic. More... | |
struct | promote_trait |
struct | promote_trait< int32_t, int64_t > |
struct | QuantifiedColorMap |
Aim: A modifier class that quantifies any colormap into a given number of colors. It is particularly useful when rendering colored objects, since for instance blender is very slow to load many different materials. More... | |
struct | QuickHull |
Aim: Implements the quickhull algorithm by Barber et al. [9], a famous arbitrary dimensional convex hull computation algorithm. It relies on dedicated geometric kernels for computing and comparing facet geometries. More... | |
struct | RandomAccessCategory |
class | RandomColorMap |
Aim: access to random color from a gradientColorMap. More... | |
struct | RawReader |
Aim: Raw binary import of an Image. More... | |
struct | RawWriter |
Aim: Raw binary export of an Image. More... | |
struct | RayIntersectionPredicate |
This class implements various intersection predicates between a ray and a triangle, a quad or a surfel in dimension 3. More... | |
class | RealFFT< HyperRectDomain< TSpace >, T > |
struct | ReducedMedialAxis |
Aim: Implementation of the separable medial axis extraction. More... | |
struct | RegularBinner |
Aim: Represents an elementary functor that partitions quantities into regular intervals, given a range [min,max] range and a number nb of intervals (each interval is called a bin). More... | |
class | RegularPointEmbedder |
Aim: A simple point embedder where grid steps are given for each axis. Note that the real point (0,...,0) is mapped onto the digital point (0,...,0). More... | |
class | ReverseDistanceTransformation |
Aim: Implementation of the linear in time reverse distance transformation for separable metrics. More... | |
class | ReverseIterator |
This class adapts any bidirectional iterator so that operator++ calls operator-- and vice versa. More... | |
class | RosenProffittLocalLengthEstimator |
Aim: Rosen-Proffitt Length Estimator. More... | |
struct | RowMajorStorage |
Tag (empty structure) specifying a row-major storage order. More... | |
class | SaturatedSegmentation |
Aim: Computes the saturated segmentation, that is the whole set of maximal segments within a range given by a pair of ConstIterators (maximal segments are segments that cannot be included in greater segments). More... | |
struct | SegmentComputerTraits |
Aim: Provides the category of the segment computer {ForwardSegmentComputer,BidirectionalSegmentComputer, DynamicSegmentComputer, DynamicBidirectionalSegmentComputer}. More... | |
class | SeparableMetricAdapter |
Aim: Adapts any model of CMetric to construct a separable metric (model of CSeparableMetric). More... | |
struct | SequenceCategory |
struct | SetAssociativeCategory |
struct | SetFromImage |
Aim: Define utilities to convert a digital set into an image. More... | |
struct | SetMode |
Modifier class in a Board2D stream. Useful to choose your own mode for a given class. Realizes the concept CDrawableWithBoard2D. More... | |
struct | SetMode3D |
Modifier class in a Display3D stream. Useful to choose your own mode for a given class. Realizes the concept CDrawableWithDisplay3D. More... | |
struct | SetName3D |
class | SetOfSurfels |
Aim: A model of CDigitalSurfaceContainer which defines the digital surface as connected surfels. The shape is determined by the set of surfels that composed the surface. The set of surfels is stored in this container. More... | |
struct | SetSelectCallback3D |
class | SetValueIterator |
Aim: implements an output iterator, which is able to write values in an underlying image, by calling its setValue method. More... | |
class | Shapes |
Aim: A utility class for constructing different shapes (balls, diamonds, and others). More... | |
class | Shortcuts |
Aim: This class is used to simplify shape and surface creation. With it, you can create new shapes and surface with few lines of code. The drawback is that you use specific types or objects, which could lead to faster code or more compact data structures. More... | |
class | ShortcutsGeometry |
Aim: This class is used to simplify shape and surface creation. With it, you can create new shapes and surface in a few lines. The drawback is that you use specific types or objects, which could lead to faster code or more compact data structures. More... | |
class | ShroudsRegularization |
Aim: Implements the Shrouds Regularization algorithm of Nielson et al [92]. More... | |
class | Signal |
Aim: Represents a discrete signal, periodic or not. The signal can be passed by value since it is only cloned when modified. More... | |
struct | SignalData |
struct | SignedKhalimskyCell |
Represents a signed cell in a cellular grid space by its Khalimsky coordinates and a boolean value. More... | |
struct | SignedKhalimskyPreCell |
Represents a signed cell in an unbounded cellular grid space by its Khalimsky coordinates and a boolean value. More... | |
class | Simple2x2DetComputer |
Aim: Small class useful to compute the determinant of a 2x2 matrix from its four coefficients, ie. \(
\begin{vmatrix}
a & x \\
b & y
\end{vmatrix}
\). More... | |
struct | SimpleAssociativeCategory |
class | SimpleConstRange |
Aim: model of CConstRange that adapts any range of elements bounded by two iterators [itb, ite) and provides services to (circularly)iterate over it (in a read-only manner). More... | |
class | SimpleDistanceColorMap |
Aim: simple blue to red colormap for distance information for instance. More... | |
class | SimpleIncremental2x2DetComputer |
Aim: Small class useful to compute, in an incremental way, the determinant of a 2x2 matrix from its four coefficients, ie. \(
\begin{vmatrix}
a & x \\
b & y
\end{vmatrix}
\). More... | |
class | SimpleLinearRegression |
Description of class 'SimpleLinearRegression'. More... | |
class | SimpleMatrix |
Aim: implements basic MxN Matrix services (M,N>=1). More... | |
struct | SimpleMatrixSpecializations |
Aim: Implement internal matrix services for specialized matrix size. More... | |
struct | SimpleMatrixSpecializations< TMatrix, 1, 1 > |
Aim: More... | |
struct | SimpleMatrixSpecializations< TMatrix, 2, 2 > |
Aim: More... | |
struct | SimpleMatrixSpecializations< TMatrix, 3, 3 > |
Aim: More... | |
class | SimpleRandomAccessConstRangeFromPoint |
Aim: model of CConstBidirectionalRangeFromPoint that adapts any range of elements bounded by two iterators [itb, ite) and provides services to (circularly)iterate over it (in a read-only manner). More... | |
class | SimpleRandomAccessRangeFromPoint |
Aim: model of CBidirectionalRangeFromPoint that adapts any range of elements bounded by two iterators [itb, ite) and provides services to (circularly)iterate over it (in a read-only manner). More... | |
class | SpaceND |
class | SpatialCubicalSubdivision |
Aim: This class is a data structure that subdivides a rectangular domains into cubical domains of size \( r^n \) in order to store points into different bins (each cubical domain is a bin, characterized by one coordinate). This data structure may be used for proximity queries, generally to get the points at distance r from a given point. More... | |
class | SpeedExtrapolator |
Aim: Class for the computation of the a speed value at some point p, from the available distance values and speed values of some points lying in the 1-neighborhood of p (ie. points at a L1-distance to p equal to 1) in order to extrapolate a speed field in the normal direction to the interface. More... | |
class | SphericalAccumulator |
Aim: implements an accumulator (as histograms for 1D scalars) adapted to spherical point samples. More... | |
class | SphericalTriangle |
Aim: Represent a triangle drawn onto a sphere of radius 1. More... | |
struct | Splitter |
class | StabbingCircleComputer |
Aim: On-line recognition of a digital circular arcs (DCA) defined as a sequence of connected grid edges such that there is at least one (Euclidean) circle that separates the centers of the two incident pixels of each grid edge. More... | |
class | StabbingLineComputer |
Aim: On-line recognition of a digital straight segment (DSS) defined as a sequence of connected grid edges such that there is at least one straight line that separates the centers of the two incident pixels of each grid edge. More... | |
class | StandardDSL |
Aim: This class is an alias of ArithmeticalDSS for standard DSL. It represents a standard digital straight line (DSL), ie. the set of digital points \( (x,y) \in \mathbb{Z}^2 \) such that \( \mu \leq ax - by < \mu + \omega \) with \( a,b,\mu,\omega \in \mathbb{Z} \), \( \gcd(a,b) = 1 \) and \( \omega = |a| + |b| \). Note that any DSL such that \( \omega = |a| + |b| \) is simply 4-connected. More... | |
class | StandardDSLQ0 |
Aim: Represents a digital straight line with slope in the first quadrant (Q0: x >= 0, y >= 0 ). More... | |
class | StandardDSS4 |
Aim: This class represents a standard digital straight segment (DSS), ie. the sequence of simply 4-connected digital points contained in a standard digital straight line (DSL) between two points of it. This class is an alias of ArithmeticalDSS. More... | |
class | StandardDSS6Computer |
Aim: Dynamic recognition of a 3d-digital straight segment (DSS) More... | |
class | StarShaped2D |
class | StarShaped3D |
class | Statistic |
Aim: This class processes a set of sample values for one variable and can then compute different statistics, like sample mean, sample variance, sample unbiased variance, etc. It is minimalistic for space efficiency. For multiple variables, sample storage and others, see Statistics class. More... | |
class | STBReader |
Aim: Image reader using the stb_image.h header only code. More... | |
class | STBWriter |
Aim: Image Writer using the stb_image.h header only code. More... | |
struct | StdMapRebinder |
class | SternBrocot |
Aim: The Stern-Brocot tree is the tree of irreducible fractions. This class allows to construct it progressively and to navigate within fractions in O(1) time for most operations. It is well known that the structure of this tree is a coding of the continued fraction representation of fractions. More... | |
class | STLMapToVertexMapAdapter |
Aim: This class adapts any map of the STL to match with the CVertexMap concept. More... | |
class | StraightLineFrom2Points |
Aim: Represents a straight line uniquely defined by two 2D points and that is able to return for any given 2D point its signed distance to itself. More... | |
struct | Style2DFactory |
struct | SurfaceMesh |
Aim: Represents an embedded mesh as faces and a list of vertices. Vertices may be shared among faces but no specific topology is required. However, you also have methods to navigate between neighbor vertices, faces, etc. The mesh can be equipped with normals at faces and/or vertices. More... | |
struct | SurfaceMeshHelper |
Aim: An helper class for building classical meshes. More... | |
struct | SurfaceMeshMeasure |
Aim: stores an arbitrary measure on a SurfaceMesh object. The measure can be spread onto its vertices, edges, or faces. This class is notably used by CorrectedNormalCurrentComputer and NormalCycleComputer to store the curvature measures, which may be located on different cells. The measure can be scalar or any other summable type (see template parameter TValue). More... | |
struct | SurfaceMeshReader |
Aim: An helper class for reading mesh files (Wavefront OBJ at this point) and creating a SurfaceMesh. More... | |
struct | SurfaceMeshWriter |
Aim: An helper class for writing mesh file formats (Waverfront OBJ at this point) and creating a SurfaceMesh. More... | |
class | Surfaces |
Aim: A utility class for constructing surfaces (i.e. set of (n-1)-cells). More... | |
class | SurfelAdjacency |
Aim: Represent adjacencies between surfel elements, telling if it follows an interior to exterior ordering or exterior to interior ordering. It allows tracking of boundaries and of surfaces. More... | |
class | SurfelNeighborhood |
Aim: This helper class is useful to compute the neighboring surfels of a given surfel, especially over a digital surface or over an object boundary. Two signed surfels are incident if they share a common n-2 cell. This class uses a SurfelAdjacency so as to determine adjacent surfels (either looking for them from interior to exterior or inversely). More... | |
class | SymmetricConvexExpander |
Aim: SymmetricConvexExpander computes symmetric fully convex subsets of a given digital set. More... | |
struct | TableReader |
Aim: Implements method to read a set of numbers represented in each line of a file. More... | |
struct | TagFalse |
struct | TagTrue |
struct | TagUnknown |
class | TangencyComputer |
Aim: A class that computes tangency to a given digital set. It provides services to compute all the cotangent points to a given point, or to compute shortest paths. More... | |
class | TangentAngleFromDSSEstimator |
struct | TangentFromBinomialConvolverFunctor |
Aim: This class is a functor for getting the tangent vector of a binomial convolver. More... | |
class | TangentFromDCAEstimator |
class | TangentFromDSS2DFunctor |
class | TangentFromDSS3DBy2DFunctor |
class | TangentFromDSS3DFunctor |
class | TangentFromDSSEstimator |
class | TangentVectorFromDSSEstimator |
class | TickedColorMap |
Aim: This class adapts any colormap to add "ticks" in the colormap colors. More... | |
class | TiledImage |
Aim: implements a tiled image from a "bigger/original" one from an ImageFactory. More... | |
class | TiledImageBidirectionalConstRangeFromPoint |
Aim: model of CConstBidirectionalRangeFromPoint that adapts a TiledImage range of elements bounded by two iterators [itb, ite) and provides services to (circularly)iterate over it (in a read-only manner). More... | |
class | TiledImageBidirectionalRangeFromPoint |
Aim: model of CBidirectionalRangeFromPoint that adapts a TiledImage range of elements bounded by two iterators [itb, ite) and provides services to (circularly)iterate over it. More... | |
class | TimeStampMemoizer |
Aim: A generic class to store a given maximum number of pairs (key, value). The class tends to memorize pairs which are accessed more frequently than others. It is thus a memoizer, which is used to memorize the result of costly computations. The memoization principle is simple: a timestamp is attached to a pair (key,value). Each time a query is made, if the item was memoized, the result is returned while the timestamp of the item is updated. User can also add or update a value in the memoizer, which updates also its timestamp. After adding a pair (key,value), if the maximal number of items is reached, at least the oldest half (or a fraction) of the items are deleted, leaving space for storing new pairs (key,value). More... | |
struct | ToDGtalCategory |
Aim: Provides the DGtal category matching C {ForwardCategory,BidirectionalCategory,RandomAccessCategory}. More... | |
struct | ToDGtalCategory< boost::bidirectional_traversal_tag > |
struct | ToDGtalCategory< boost::forward_traversal_tag > |
struct | ToDGtalCategory< boost::iterators::detail::iterator_category_with_traversal< std::input_iterator_tag, boost::bidirectional_traversal_tag > > |
struct | ToDGtalCategory< boost::iterators::detail::iterator_category_with_traversal< std::input_iterator_tag, boost::forward_traversal_tag > > |
struct | ToDGtalCategory< boost::iterators::detail::iterator_category_with_traversal< std::input_iterator_tag, boost::random_access_traversal_tag > > |
struct | ToDGtalCategory< boost::random_access_traversal_tag > |
struct | ToDGtalCategory< std::bidirectional_iterator_tag > |
struct | ToDGtalCategory< std::forward_iterator_tag > |
struct | ToDGtalCategory< std::random_access_iterator_tag > |
class | Trace |
implementation of basic methods to trace out messages with indentation levels. More... | |
class | TraceWriter |
Virtual Class to implement trace writers. More... | |
class | TraceWriterFile |
class | TraceWriterTerm |
Implements trace prefix for color terminals. More... | |
struct | TransformedPrism |
class to modify the position and scale to construct better illustration mode. More... | |
struct | Translate2DDomain |
class to modify the data of an given image and also the possibility to translate it (optional). More... | |
class | TriangulatedSurface |
Aim: Represents a triangulated surface. The topology is stored with a half-edge data structure. This object stored the positions of vertices in space. If you need further data attached to the surface, you may use property maps (see TriangulatedSurface::makeVertexMap ). More... | |
class | TrueDigitalSurfaceLocalEstimator |
Aim: An estimator on digital surfaces that returns the reference local geometric quantity. This is used for comparing estimators. More... | |
class | TrueGlobalEstimatorOnPoints |
Aim: Computes the true quantity associated to a parametric shape or to a subrange associated to a parametric shape. More... | |
class | TrueLocalEstimatorOnPoints |
Aim: Computes the true quantity to each element of a range associated to a parametric shape. More... | |
class | TwoStepLocalLengthEstimator |
Aim: a simple model of CGlobalCurveEstimator that compute the length of a curve using the l_1 metric (just add 1/h for every step). More... | |
class | UmbrellaComputer |
Aim: Useful for computing umbrellas on 'DigitalSurface's, ie set of n-1 cells around a n-3 cell. More... | |
struct | UniqueAssociativeCategory |
struct | UnorderedAssociativeCategory |
struct | UnorderedMapAssociativeCategory |
struct | UnorderedMultimapAssociativeCategory |
struct | UnorderedMultisetAssociativeCategory |
struct | UnorderedSetAssociativeCategory |
struct | UnorderedSetByBlock |
struct | Update2DDomainPosition |
class to modify the position and orientation of an 2D domain. More... | |
struct | UpdateImage3DEmbedding |
class to modify the 3d embedding of the image (useful to display not only 2D slice images). The embdding can be explicitly given from the 3D position of the four bounding points. More... | |
struct | UpdateImageData |
class to modify the data of an given image and also the possibility to translate it (optional). More... | |
struct | UpdateImagePosition |
class to modify the position and orientation of an textured 2D image. More... | |
struct | UpdateLastImagePosition |
class to modify the position and orientation of an textured 2D image. More... | |
class | VCMDigitalSurfaceLocalEstimator |
Aim: This class adapts a VoronoiCovarianceMeasureOnDigitalSurface to be a model of CDigitalSurfaceLocalEstimator. It uses the Voronoi Covariance Measure to estimate geometric quantities. The type TVCMGeometricFunctor specifies which is the estimated quantity. For instance, VCMGeometricFunctors::VCMNormalVectorFunctor returns the estimated VCM surface outward normal for given surfels. More... | |
class | VectorField |
Aim: VectorField represents a discrete vector field in the dec package. Vector field values are attached to 0-cells with the same duality as the vector field. More... | |
class | VectorsInHeat |
This class implements [111] on polygonal surfaces (using Discrete differential calculus on polygonal surfaces). More... | |
class | Viewer3D |
struct | Viewer3DFactory |
Factory for GPL Viewer3D: More... | |
struct | VolReader |
Aim: implements methods to read a "Vol" file format. More... | |
struct | VolWriter |
Aim: Export a 3D Image using the Vol formats. More... | |
class | VoronoiCovarianceMeasure |
Aim: This class precomputes the Voronoi Covariance Measure of a set of points. It can compute the covariance measure of an arbitrary function with given support. More... | |
class | VoronoiCovarianceMeasureOnDigitalSurface |
Aim: This class specializes the Voronoi covariance measure for digital surfaces. It adds notably the embedding of surface elements, the diagonalisation of the VCM, and the orientation of the first VCM eigenvector toward the interior of the surface. More... | |
class | VoronoiMap |
Aim: Implementation of the linear in time Voronoi map construction. More... | |
class | VoronoiMapComplete |
Aim: Implementation of the linear in time Voronoi map construction. More... | |
class | VoxelComplex |
This class represents a voxel complex living in some Khalimsky space. Voxel complexes are derived from. More... | |
class | Warning_promote_trait_not_specialized_for_this_case |
struct | WindingNumbersShape |
Aim: model of a CEuclideanOrientedShape from an implicit function from an oriented point cloud. The implicit function is given by the generalized winding number of the oriented point cloud [10] . We use the libIGL implementation. More... | |
class | Xe_kComputer |
class | Xe_kComputer< 0, Ring, Alloc > |
Typedefs | |
typedef boost::uint8_t | uint8_t |
unsigned 8-bit integer. | |
typedef boost::uint16_t | uint16_t |
unsigned 16-bit integer. | |
typedef boost::uint32_t | uint32_t |
unsigned 32-bit integer. | |
typedef boost::uint64_t | uint64_t |
unsigned 64-bit integer. | |
typedef boost::int8_t | int8_t |
signed 8-bit integer. | |
typedef boost::int16_t | int16_t |
signed 16-bit integer. | |
typedef boost::int32_t | int32_t |
signed 32-bit integer. | |
typedef boost::int64_t | int64_t |
signed 94-bit integer. | |
typedef mpz_class | BigInteger |
Multi-precision integer with GMP implementation. | |
typedef DGtal::uint32_t | Dimension |
typedef unsigned int | Order |
Aim: Order is used as template parameter for DEC classes. | |
template<typename TIterator , typename TInteger = typename IteratorCirculatorTraits<TIterator>::Value::Coordinate> | |
using | StandardDSS4Computer = ArithmeticalDSSComputer<TIterator, TInteger, 4> |
Aim: This is an alias to ArithmeticalDSS that is devoted to the dynamic recognition of standard and simply 4-connected digital straight segments (DSS) along any sequence of digital points. | |
template<typename TIterator , typename TInteger = typename IteratorCirculatorTraits<TIterator>::Value::Coordinate> | |
using | NaiveDSS8Computer = ArithmeticalDSSComputer<TIterator, TInteger, 8> |
Aim: This is an alias to ArithmeticalDSS that is devoted to the dynamic recognition of naive and simply 8-connected digital straight segments (DSS) along any sequence of digital points. | |
template<typename T , typename U > | |
using | ArithmeticConversionType = typename ArithmeticConversionTraits<T, U>::type |
Result type of arithmetic binary operators between two given types. | |
using | NeighborhoodConfiguration = uint32_t |
Functions | |
template<typename TSpace > | |
std::ostream & | operator<< (std::ostream &out, const ClosedIntegerHalfPlane< TSpace > &object) |
template<typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const IntegerComputer< TInteger > &object) |
template<typename TSpace , typename TSequence > | |
std::ostream & | operator<< (std::ostream &out, const LatticePolytope2D< TSpace, TSequence > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const ModuloComputer< T > &object) |
template<typename TFraction > | |
std::ostream & | operator<< (std::ostream &out, const Pattern< TFraction > &object) |
template<typename TFraction > | |
std::ostream & | operator<< (std::ostream &out, const StandardDSLQ0< TFraction > &object) |
void | assert_failed (const std::string &expr, const std::string &function, const std::string &file, long int line) |
void | assert_failed_message (const std::string &expr, const std::string &message, const std::string &function, const std::string &file, long int line) |
void | fatal_error_failed (const std::string &expr, const std::string &function, const std::string &file, long int line) |
void | fatal_error_failed_message (const std::string &expr, const std::string &message, const std::string &function, const std::string &file, long int line) |
template<typename TSequence > | |
std::ostream & | operator<< (std::ostream &out, const BackInsertionSequenceToStackAdapter< TSequence > &object) |
template<typename TSequence > | |
BackInsertionSequenceToStackAdapter< TSequence > | backStack (TSequence &aSequence) |
template<typename TIterator > | |
Circulator< TIterator > | operator+ (typename IteratorCirculatorTraits< TIterator >::Difference d, Circulator< TIterator > &object) |
std::ostream & | operator<< (std::ostream &out, const Clock &object) |
Trace | trace (traceWriterTerm) |
template<typename TIterator , typename TFunctor , typename TReturnType > | |
std::ostream & | operator<< (std::ostream &out, const ConstRangeAdapter< TIterator, TFunctor, TReturnType > &object) |
template<typename A , typename B > | |
std::ostream & | operator<< (std::ostream &out, const std::pair< A, B > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const CountedConstPtrOrConstPtr< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const CountedPtr< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const CountedPtrOrPtr< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const CowPtr< T > &object) |
template<typename TSequence > | |
std::ostream & | operator<< (std::ostream &out, const FrontInsertionSequenceToStackAdapter< TSequence > &object) |
template<typename TSequence > | |
FrontInsertionSequenceToStackAdapter< TSequence > | frontStack (TSequence &aSequence) |
template<typename TValue , unsigned int N, unsigned int M> | |
std::ostream & | operator<< (std::ostream &out, const IndexedListWithBlocks< TValue, N, M > &object) |
template<typename TSequence , typename TRank > | |
std::ostream & | operator<< (std::ostream &out, const InputIteratorWithRankOnSequence< TSequence, TRank > &object) |
template<typename IC > | |
bool | isEmpty (const IC &itb, const IC &ite) |
template<typename IC > | |
bool | isNotEmpty (const IC &itb, const IC &ite) |
template<typename IC > | |
void | advanceIterator (IC &ic, typename IteratorCirculatorTraits< IC >::Difference n) |
template<typename IC > | |
IteratorCirculatorTraits< IC >::Difference | rangeSize (const IC &itb, const IC &ite) |
template<typename IC > | |
IteratorCirculatorTraits< IC >::Difference | subRangeSize (const IC &itb, const IC &ite) |
template<typename IC > | |
IC | rangeMiddle (const IC &itb, const IC &ite) |
template<typename IC > | |
IC | subRangeMiddle (const IC &itb, const IC &ite) |
template<typename TData , unsigned int L, typename TWord , unsigned int N, unsigned int M> | |
std::ostream & | operator<< (std::ostream &out, const LabelledMap< TData, L, TWord, N, M > &object) |
template<unsigned int L, typename TWord > | |
std::ostream & | operator<< (std::ostream &out, const Labels< L, TWord > &object) |
std::ostream & | operator<< (std::ostream &out, const OrderedAlphabet &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const OwningOrAliasingPtr< T > &object) |
template<typename TKey , typename TValue > | |
std::ostream & | operator<< (std::ostream &out, const TimeStampMemoizer< TKey, TValue > &object) |
std::ostream & | operator<< (std::ostream &out, const Trace &object) |
std::ostream & | operator<< (std::ostream &out, const TraceWriter &object) |
std::ostream & | operator<< (std::ostream &out, const TraceWriterFile &object) |
std::ostream & | operator<< (std::ostream &out, const TraceWriterTerm &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const ATSolver2D< T > &object) |
template<Dimension dim, typename TInteger > | |
size_t | hash_value (const KhalimskyCell< dim, TInteger > &cell) |
template<Dimension dimEmbedded, Dimension dimAmbient, typename TLinearAlgebraBackend , typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const DiscreteExteriorCalculus< dimEmbedded, dimAmbient, TLinearAlgebraBackend, TInteger > &object) |
template<typename C , typename S , Order order_in, Duality duality_in, Order order_out, Duality duality_out> | |
std::ostream & | operator<< (std::ostream &out, const DiscreteExteriorCalculusSolver< C, S, order_in, duality_in, order_out, duality_out > &object) |
std::ostream & | operator<< (std::ostream &out, const Duality &object) |
template<typename Calculus , Order order, Duality duality> | |
std::ostream & | operator<< (std::ostream &out, const KForm< Calculus, order, duality > &object) |
template<typename Calculus , Order order, Duality duality> | |
KForm< Calculus, order, duality > | operator+ (const KForm< Calculus, order, duality > &form_a, const KForm< Calculus, order, duality > &form_b) |
template<typename Calculus , Order order, Duality duality> | |
KForm< Calculus, order, duality > | operator- (const KForm< Calculus, order, duality > &form_a, const KForm< Calculus, order, duality > &form_b) |
template<typename Calculus , Order order, Duality duality> | |
KForm< Calculus, order, duality > | operator* (const typename Calculus::Scalar &scalar, const KForm< Calculus, order, duality > &form) |
template<typename Calculus , Order order, Duality duality> | |
KForm< Calculus, order, duality > | operator- (const KForm< Calculus, order, duality > &form) |
template<typename Calculus , Order order_in, Duality duality_in, Order order_out, Duality duality_out> | |
std::ostream & | operator<< (std::ostream &out, const LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > &object) |
template<typename Calculus , Order order_in, Duality duality_in, Order order_out, Duality duality_out> | |
LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > | operator+ (const LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > &linear_operator_a, const LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > &linear_operator_b) |
template<typename Calculus , Order order_in, Duality duality_in, Order order_out, Duality duality_out> | |
LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > | operator- (const LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > &linear_operator_a, const LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > &linear_operator_b) |
template<typename Calculus , Order order_in, Duality duality_in, Order order_out, Duality duality_out> | |
LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > | operator* (const typename Calculus::Scalar &scalar, const LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > &linear_operator) |
template<typename Calculus , Order order_in, Duality duality_in, Order order_fold, Duality duality_fold, Order order_out, Duality duality_out> | |
LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > | operator* (const LinearOperator< Calculus, order_fold, duality_fold, order_out, duality_out > &operator_left, const LinearOperator< Calculus, order_in, duality_in, order_fold, duality_fold > &operator_right) |
template<typename Calculus , Order order_in, Duality duality_in, Order order_out, Duality duality_out> | |
KForm< Calculus, order_out, duality_out > | operator* (const LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > &linear_operator, const KForm< Calculus, order_in, duality_in > &input_form) |
template<typename Calculus , Order order_in, Duality duality_in, Order order_out, Duality duality_out> | |
LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > | operator- (const LinearOperator< Calculus, order_in, duality_in, order_out, duality_out > &linear_operator) |
template<typename TP , typename TV > | |
std::ostream & | operator<< (std::ostream &out, const PolygonalCalculus< TP, TV > &object) |
template<typename Calculus , Duality duality> | |
std::ostream & | operator<< (std::ostream &out, const VectorField< Calculus, duality > &object) |
template<typename Calculus , Duality duality> | |
VectorField< Calculus, duality > | operator+ (const VectorField< Calculus, duality > &vector_field_a, const VectorField< Calculus, duality > &vector_field_b) |
template<typename Calculus , Duality duality> | |
VectorField< Calculus, duality > | operator- (const VectorField< Calculus, duality > &vector_field_a, const VectorField< Calculus, duality > &vector_field_b) |
template<typename Calculus , Duality duality> | |
VectorField< Calculus, duality > | operator* (const typename Calculus::Scalar &scalar, const VectorField< Calculus, duality > &vector_field) |
template<typename Calculus , Duality duality> | |
VectorField< Calculus, duality > | operator- (const VectorField< Calculus, duality > &vector_field) |
template<typename TInputPoint , typename TConstIterator > | |
std::ostream & | operator<< (std::ostream &out, const AlphaThickSegmentComputer< TInputPoint, TConstIterator > &object) |
template<typename TCoordinate , typename TInteger , unsigned short adjacency> | |
std::ostream & | operator<< (std::ostream &out, const ArithmeticalDSL< TCoordinate, TInteger, adjacency > &object) |
template<typename TCoordinate , typename TInteger , unsigned short adjacency> | |
std::ostream & | operator<< (std::ostream &out, const ArithmeticalDSS< TCoordinate, TInteger, adjacency > &object) |
template<typename TIterator , typename TInteger , unsigned short adjacency> | |
std::ostream & | operator<< (std::ostream &out, const ArithmeticalDSSComputer< TIterator, TInteger, adjacency > &object) |
template<typename TConstIteratorOnPoints , typename TValue > | |
std::ostream & | operator<< (std::ostream &out, const BinomialConvolver< TConstIteratorOnPoints, TValue > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const BLUELocalLengthEstimator< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const DSSLengthEstimator< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const FPLengthEstimator< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const L1LengthEstimator< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const MLPLengthEstimator< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const RosenProffittLocalLengthEstimator< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const TwoStepLocalLengthEstimator< T > &object) |
template<typename TIterator , typename TInteger , int connectivity> | |
std::ostream & | operator<< (std::ostream &out, const FP< TIterator, TInteger, connectivity > &object) |
template<typename TIterator , typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const FrechetShortcut< TIterator, TInteger > &object) |
template<typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const FreemanChain< TInteger > &object) |
template<typename SegmentComputer > | |
std::ostream & | operator<< (std::ostream &out, const GreedySegmentation< SegmentComputer > &object) |
template<typename TKSpace > | |
std::ostream & | operator<< (std::ostream &out, const GridCurve< TKSpace > &object) |
template<typename TConstIterator , typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const OneBalancedWordComputer< TConstIterator, TInteger > &object) |
template<typename TCurve , typename TTransfromation > | |
std::ostream & | operator<< (std::ostream &out, const DecoratorParametricCurveTransformation< TCurve, TTransfromation > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const EllipticHelix< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Knot_3_1< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Knot_3_2< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Knot_4_1< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Knot_4_3< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Knot_5_1< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Knot_5_2< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Knot_6_2< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Knot_7_4< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const NaiveParametricCurveDigitizer3D< T > &object) |
template<typename SegmentComputer > | |
std::ostream & | operator<< (std::ostream &out, const SaturatedSegmentation< SegmentComputer > &object) |
template<typename IC > | |
IC | getMiddleIterator (const IC &itb, const IC &ite, RandomAccessCategory) |
template<typename IC > | |
IC | getMiddleIterator (const IC &itb, const IC &ite, BidirectionalCategory) |
template<typename IC > | |
IC | getMiddleIterator (const IC &itb, const IC &ite, ForwardCategory) |
template<typename IC > | |
IC | getMiddleIterator (const IC &itb, const IC &ite) |
template<typename SC > | |
void | maximalExtension (SC &s, const typename SC::ConstIterator &end, IteratorType) |
template<typename SC > | |
void | maximalExtension (SC &s, const typename SC::ConstIterator &, CirculatorType) |
template<typename SC > | |
void | maximalExtension (SC &s, const typename SC::ConstIterator &end) |
template<typename SC > | |
void | oppositeEndMaximalExtension (SC &s, const typename SC::ConstIterator &begin, IteratorType) |
template<typename SC > | |
void | oppositeEndMaximalExtension (SC &s, const typename SC::ConstIterator &begin, CirculatorType) |
template<typename SC > | |
void | oppositeEndMaximalExtension (SC &s, const typename SC::ConstIterator &begin) |
template<typename SC > | |
bool | maximalSymmetricExtension (SC &s, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, IteratorType) |
template<typename SC > | |
bool | maximalSymmetricExtension (SC &s, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, CirculatorType) |
template<typename SC > | |
bool | maximalSymmetricExtension (SC &s, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end) |
template<typename SC > | |
void | maximalRetraction (SC &s, const typename SC::ConstIterator &end) |
template<typename SC > | |
void | oppositeEndMaximalRetraction (SC &s, const typename SC::ConstIterator &begin) |
template<typename SC > | |
void | longestSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &end, IteratorType) |
template<typename SC > | |
void | longestSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &end, CirculatorType) |
template<typename SC > | |
void | longestSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &end) |
template<typename SC > | |
void | firstMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, DGtal::ForwardSegmentComputer) |
template<typename SC > | |
void | firstMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, DGtal::BidirectionalSegmentComputer) |
template<typename SC > | |
void | firstMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, DGtal::DynamicSegmentComputer) |
template<typename SC > | |
void | firstMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, DGtal::DynamicBidirectionalSegmentComputer) |
template<typename SC > | |
void | firstMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end) |
template<typename SC > | |
void | mostCenteredMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, DGtal::ForwardSegmentComputer) |
template<typename SC > | |
void | mostCenteredMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, DGtal::BidirectionalSegmentComputer) |
template<typename SC > | |
void | mostCenteredMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, DGtal::DynamicSegmentComputer) |
template<typename SC > | |
void | mostCenteredMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, DGtal::DynamicBidirectionalSegmentComputer) |
template<typename SC > | |
void | mostCenteredMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end) |
template<typename SC > | |
void | lastMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, DGtal::ForwardSegmentComputer) |
template<typename SC > | |
void | lastMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, BidirectionalSegmentComputer) |
template<typename SC > | |
void | lastMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, DGtal::DynamicSegmentComputer) |
template<typename SC > | |
void | lastMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end, DGtal::DynamicBidirectionalSegmentComputer) |
template<typename SC > | |
void | lastMaximalSegment (SC &s, const typename SC::ConstIterator &i, const typename SC::ConstIterator &begin, const typename SC::ConstIterator &end) |
template<typename SC > | |
void | nextMaximalSegment (SC &s, const typename SC::ConstIterator &end, DGtal::ForwardSegmentComputer) |
template<typename SC > | |
void | nextMaximalSegment (SC &s, const typename SC::ConstIterator &end, DGtal::BidirectionalSegmentComputer) |
template<typename SC > | |
void | nextMaximalSegment (SC &s, const typename SC::ConstIterator &end, DGtal::DynamicSegmentComputer) |
template<typename SC > | |
void | nextMaximalSegment (SC &s, const typename SC::ConstIterator &end, DGtal::DynamicBidirectionalSegmentComputer) |
template<typename SC > | |
void | nextMaximalSegment (SC &s, const typename SC::ConstIterator &end) |
template<typename SC > | |
void | previousMaximalSegment (SC &s, const typename SC::ConstIterator &begin, DGtal::ForwardSegmentComputer) |
template<typename SC > | |
void | previousMaximalSegment (SC &s, const typename SC::ConstIterator &begin, DGtal::BidirectionalSegmentComputer) |
template<typename SC > | |
void | previousMaximalSegment (SC &s, const typename SC::ConstIterator &begin, DGtal::DynamicSegmentComputer) |
template<typename SC > | |
void | previousMaximalSegment (SC &s, const typename SC::ConstIterator &end, DGtal::DynamicBidirectionalSegmentComputer) |
template<typename SC > | |
void | previousMaximalSegment (SC &s, const typename SC::ConstIterator &begin) |
template<typename TConstIterator > | |
std::ostream & | operator<< (std::ostream &out, const StabbingCircleComputer< TConstIterator > &object) |
template<typename TConstIterator > | |
std::ostream & | operator<< (std::ostream &out, const StabbingLineComputer< TConstIterator > &object) |
template<typename TIterator , typename TInteger , int connectivity> | |
std::ostream & | operator<< (std::ostream &out, const StandardDSS6Computer< TIterator, TInteger, connectivity > &object) |
std::ostream & | operator<< (std::ostream &out, const ContourHelper &object) |
template<typename TKSpace , typename TIterator , typename TInteger , unsigned short adjacency> | |
std::ostream & | operator<< (std::ostream &out, const ArithmeticalDSSComputerOnSurfels< TKSpace, TIterator, TInteger, adjacency > &object) |
template<typename TSpace , typename TInputPoint , typename TInternalScalar > | |
std::ostream & | operator<< (std::ostream &out, const ChordGenericNaivePlaneComputer< TSpace, TInputPoint, TInternalScalar > &object) |
template<typename TSpace , typename TInputPoint , typename TInternalScalar > | |
std::ostream & | operator<< (std::ostream &out, const ChordGenericStandardPlaneComputer< TSpace, TInputPoint, TInternalScalar > &object) |
template<typename TSpace , typename TInputPoint , typename TInternalScalar > | |
std::ostream & | operator<< (std::ostream &out, const ChordNaivePlaneComputer< TSpace, TInputPoint, TInternalScalar > &object) |
template<typename TSpace , typename TInternalInteger > | |
std::ostream & | operator<< (std::ostream &out, const COBAGenericNaivePlaneComputer< TSpace, TInternalInteger > &object) |
template<typename TSpace , typename TInternalInteger > | |
std::ostream & | operator<< (std::ostream &out, const COBAGenericStandardPlaneComputer< TSpace, TInternalInteger > &object) |
template<typename TSpace , typename TInternalInteger > | |
std::ostream & | operator<< (std::ostream &out, const COBANaivePlaneComputer< TSpace, TInternalInteger > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const DigitalPlanePredicate< T > &object) |
template<typename TF , typename TKF , typename TKS , typename TDK , Dimension dimension> | |
std::ostream & | operator<< (std::ostream &out, const DGtal::DigitalSurfaceConvolver< TF, TKF, TKS, TDK, dimension > &object) |
template<typename TF , typename TKF , typename TKS , typename TDK > | |
std::ostream & | operator<< (std::ostream &out, const DGtal::DigitalSurfaceConvolver< TF, TKF, TKS, TDK, 2 > &object) |
template<typename TF , typename TKF , typename TKS , typename TDK > | |
std::ostream & | operator<< (std::ostream &out, const DGtal::DigitalSurfaceConvolver< TF, TKF, TKS, TDK, 3 > &object) |
template<typename TSurface > | |
std::ostream & | operator<< (std::ostream &out, const DigitalSurfacePredicate< TSurface > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const DigitalSurfaceRegularization< T > &object) |
template<typename TDigitalSurfaceEmbedder , typename TNormalVectorEstimator > | |
std::ostream & | operator<< (std::ostream &out, const DigitalSurfaceEmbedderWithNormalVectorEstimator< TDigitalSurfaceEmbedder, TNormalVectorEstimator > &object) |
template<typename T , typename TC > | |
std::ostream & | operator<< (std::ostream &out, const EstimatorCache< T, TC > &object) |
template<typename TKSpace , typename TPointPredicate , typename TCovarianceMatrixFunctor > | |
std::ostream & | operator<< (std::ostream &out, const IntegralInvariantCovarianceEstimator< TKSpace, TPointPredicate, TCovarianceMatrixFunctor > &object) |
template<typename TKSpace , typename TPointPredicate > | |
std::ostream & | operator<< (std::ostream &out, const DGtal::deprecated::IntegralInvariantNormalVectorEstimator< TKSpace, TPointPredicate > &object) |
template<typename TKSpace , typename TPointPredicate , typename TVolumeFunctor > | |
std::ostream & | operator<< (std::ostream &out, const IntegralInvariantVolumeEstimator< TKSpace, TPointPredicate, TVolumeFunctor > &object) |
template<typename TD , typename TV , typename TF , typename TC > | |
std::ostream & | operator<< (std::ostream &out, const LocalEstimatorFromSurfelFunctorAdapter< TD, TV, TF, TC > &object) |
template<typename TSurface > | |
std::ostream & | operator<< (std::ostream &out, const MaximalSegmentSliceEstimation< TSurface > &object) |
template<typename TDigitalSurface , typename TNormalVectorEstimator , typename TEmbedder > | |
std::ostream & | operator<< (std::ostream &out, const NormalVectorEstimatorLinearCellEmbedder< TDigitalSurface, TNormalVectorEstimator, TEmbedder > &object) |
template<typename TSurface , typename TInternalProbingAlgorithm > | |
std::ostream & | operator<< (std::ostream &out, const PlaneProbingDigitalSurfaceLocalEstimator< TSurface, TInternalProbingAlgorithm > &object) |
template<typename TPredicate > | |
std::ostream & | operator<< (std::ostream &out, const PlaneProbingHNeighborhood< TPredicate > &object) |
template<typename TPredicate > | |
std::ostream & | operator<< (std::ostream &out, const PlaneProbingNeighborhood< TPredicate > &object) |
template<typename TPredicate , ProbingMode mode> | |
std::ostream & | operator<< (std::ostream &out, const PlaneProbingParallelepipedEstimator< TPredicate, mode > &object) |
template<typename TPredicate > | |
std::ostream & | operator<< (std::ostream &out, const PlaneProbingR1Neighborhood< TPredicate > &object) |
template<typename TPredicate > | |
std::ostream & | operator<< (std::ostream &out, const PlaneProbingRNeighborhood< TPredicate > &object) |
std::ostream & | operator<< (std::ostream &aOs, ProbingMode const &aMode) |
template<typename TPredicate , ProbingMode mode> | |
std::ostream & | operator<< (std::ostream &out, const PlaneProbingTetrahedronEstimator< TPredicate, mode > &object) |
template<typename TKSpace , typename TShape , typename TGeometricFunctor > | |
std::ostream & | operator<< (std::ostream &out, const TrueDigitalSurfaceLocalEstimator< TKSpace, TShape, TGeometricFunctor > &object) |
template<typename TDigitalSurfaceContainer , typename TSeparableMetric , typename TKernelFunction , typename TVCMGeometricFunctor > | |
std::ostream & | operator<< (std::ostream &out, const VCMDigitalSurfaceLocalEstimator< TDigitalSurfaceContainer, TSeparableMetric, TKernelFunction, TVCMGeometricFunctor > &object) |
template<typename TDigitalSurfaceContainer , typename TSeparableMetric , typename TKernelFunction > | |
std::ostream & | operator<< (std::ostream &out, const VoronoiCovarianceMeasureOnDigitalSurface< TDigitalSurfaceContainer, TSeparableMetric, TKernelFunction > &object) |
template<typename TF , typename TKS > | |
std::ostream & | operator<< (std::ostream &out, const FunctorOnCells< TF, TKS > &object) |
template<typename TSpace , bool muIncluded, bool muPlusNuIncluded> | |
std::ostream & | operator<< (std::ostream &out, const ParallelStrip< TSpace, muIncluded, muPlusNuIncluded > &object) |
template<typename TDigitalSurfaceContainer > | |
ShroudsRegularization< TDigitalSurfaceContainer > | makeShroudsRegularization (CountedPtr< IndexedDigitalSurface< TDigitalSurfaceContainer > > surface, double eps=0.00001) |
template<typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const AvnaimEtAl2x2DetSignComputer< TInteger > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Filtered2x2DetComputer< T > &object) |
template<typename TPoint , typename TDetComputer > | |
std::ostream & | operator<< (std::ostream &out, const InGeneralizedDiskOfGivenRadius< TPoint, TDetComputer > &object) |
template<typename TPoint , typename TDetComputer > | |
std::ostream & | operator<< (std::ostream &out, const InHalfPlaneBy2x2DetComputer< TPoint, TDetComputer > &object) |
template<typename TPoint , typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const InHalfPlaneBySimple3x3Matrix< TPoint, TInteger > &object) |
template<typename TOrientationFunctor , bool acceptNeg, bool acceptZero> | |
std::ostream & | operator<< (std::ostream &out, const PredicateFromOrientationFunctor2< TOrientationFunctor, acceptNeg, acceptZero > &object) |
template<typename TI , typename TO > | |
std::ostream & | operator<< (std::ostream &out, const Simple2x2DetComputer< TI, TO > &object) |
template<typename TI , typename TO > | |
std::ostream & | operator<< (std::ostream &out, const SimpleIncremental2x2DetComputer< TI, TO > &object) |
template<typename TPoint , typename TOrientationFunctor > | |
std::ostream & | operator<< (std::ostream &out, const MelkmanConvexHull< TPoint, TOrientationFunctor > &object) |
template<typename Shape > | |
std::ostream & | operator<< (std::ostream &out, const Preimage2D< Shape > &object) |
template<typename TKernel > | |
std::ostream & | operator<< (std::ostream &out, const QuickHull< TKernel > &object) |
template<typename TSpace > | |
std::ostream & | operator<< (std::ostream &out, const SpatialCubicalSubdivision< TSpace > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const SphericalAccumulator< T > &object) |
template<typename TPoint > | |
std::ostream & | operator<< (std::ostream &out, const ConvexCellComplex< TPoint > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const experimental::ChamferNorm2D< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const DigitalMetricAdapter< T > &object) |
template<typename S , typename P , typename TSep > | |
std::ostream & | operator<< (std::ostream &out, const DistanceTransformation< S, P, TSep > &object) |
template<typename T , DGtal::uint32_t p, typename P > | |
std::ostream & | operator<< (std::ostream &out, const ExactPredicateLpPowerSeparableMetric< T, p, P > &object) |
template<typename T , DGtal::uint32_t p, typename P > | |
std::ostream & | operator<< (std::ostream &out, const ExactPredicateLpSeparableMetric< T, p, P > &object) |
template<typename TImage , typename TSet , typename TPointPredicate , typename TPointFunctor > | |
std::ostream & | operator<< (std::ostream &out, const FMM< TImage, TSet, TPointPredicate, TPointFunctor > &object) |
template<typename T , typename V > | |
std::ostream & | operator<< (std::ostream &out, const InexactPredicateLpSeparableMetric< T, V > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const LpMetric< T > &object) |
template<typename W , typename Sep , typename Image > | |
std::ostream & | operator<< (std::ostream &out, const PowerMap< W, Sep, Image > &object) |
template<typename W , typename TSep > | |
std::ostream & | operator<< (std::ostream &out, const ReverseDistanceTransformation< W, TSep > &object) |
template<typename TM > | |
std::ostream & | operator<< (std::ostream &out, const SeparableMetricAdapter< TM > &object) |
template<typename S , typename P , typename Sep , typename TI > | |
std::ostream & | operator<< (std::ostream &out, const VoronoiMap< S, P, Sep, TI > &object) |
template<typename S , typename P , typename Sep , typename TI > | |
std::ostream & | operator<< (std::ostream &out, const VoronoiMapComplete< S, P, Sep, TI > &object) |
template<typename TSpace , typename TInteger > | |
std::ostream & | operator<< (std::ostream &that_stream, const EhrhartPolynomial< TSpace, TInteger > &that_object_to_display) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Measure< T > &object) |
template<typename TSpace , typename TSeparableMetric > | |
std::ostream & | operator<< (std::ostream &out, const VoronoiCovarianceMeasure< TSpace, TSeparableMetric > &object) |
template<typename TO , typename TD , typename TS > | |
std::ostream & | operator<< (std::ostream &out, const KanungoNoise< TO, TD, TS > &object) |
template<typename TGraph , typename TMarkSet > | |
std::ostream & | operator<< (std::ostream &out, const BreadthFirstVisitor< TGraph, TMarkSet > &object) |
template<typename TGraph , typename TMarkSet > | |
std::ostream & | operator<< (std::ostream &out, const DepthFirstVisitor< TGraph, TMarkSet > &object) |
template<typename TGraph , typename TVertexFunctor , typename TMarkSet > | |
std::ostream & | operator<< (std::ostream &out, const DistanceBreadthFirstVisitor< TGraph, TVertexFunctor, TMarkSet > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Expander< T > &object) |
template<typename TGraphVisitor > | |
std::ostream & | operator<< (std::ostream &out, const GraphVisitorRange< TGraphVisitor > &object) |
std::ostream & | operator<< (std::ostream &out, const ParameterValue &object) |
std::ostream & | operator<< (std::ostream &out, const Parameters &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Shortcuts< T > &object) |
template<typename TArrayIterator , typename TDomain > | |
std::ostream & | operator<< (std::ostream &out, const ArrayImageAdapter< TArrayIterator, TDomain > &object) |
[IteratorCompletionTraits] | |
template<typename TArrayIterator , typename TDomain > | |
ArrayImageAdapter< TArrayIterator, TDomain > | makeArrayImageAdapterFromIterator (TArrayIterator anArrayIterator, TDomain const &aFullDomain, TDomain const &aViewDomain) |
template<typename TArrayIterator , typename TDomain > | |
ArrayImageAdapter< TArrayIterator, TDomain > | makeArrayImageAdapterFromIterator (TArrayIterator anArrayIterator, TDomain const &aFullDomain) |
template<typename TImage , typename TDomain = typename TImage::Domain> | |
ArrayImageAdapter< decltype(((TImage *) nullptr) ->begin()), TDomain > | makeArrayImageAdapterFromImage (TImage &anImage, TDomain const &aViewDomain) |
template<typename TImage , typename TDomain = typename TImage::Domain> | |
ArrayImageAdapter< decltype(((TImage *) nullptr) ->begin()), TDomain > | makeArrayImageAdapterFromImage (TImage &anImage) |
template<typename TIterableClass > | |
std::ostream & | operator<< (std::ostream &out, const ArrayImageIterator< TIterableClass > &object) |
template<typename TImageContainer , typename TNewDomain , typename TFunctorD , typename TNewValue , typename TFunctorV > | |
std::ostream & | operator<< (std::ostream &out, const ConstImageAdapter< TImageContainer, TNewDomain, TFunctorD, TNewValue, TFunctorV > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Image< T > &object) |
template<typename TImageContainer , typename TNewDomain , typename TFunctorD , typename TNewValue , typename TFunctorV , typename TFunctorVm1 > | |
std::ostream & | operator<< (std::ostream &out, const ImageAdapter< TImageContainer, TNewDomain, TFunctorD, TNewValue, TFunctorV, TFunctorVm1 > &object) |
template<typename TImageContainer , typename TImageFactory , typename TReadPolicy , typename TWritePolicy > | |
std::ostream & | operator<< (std::ostream &out, const ImageCache< TImageContainer, TImageFactory, TReadPolicy, TWritePolicy > &object) |
template<typename T , typename TV > | |
std::ostream & | operator<< (std::ostream &out, const ImageContainerByITKImage< T, TV > &object) |
template<typename TDomain , typename TValue > | |
std::ostream & | operator<< (std::ostream &out, const ImageContainerBySTLMap< TDomain, TValue > &object) |
template<typename Domain , typename V > | |
std::ostream & | operator<< (std::ostream &out, const ImageContainerBySTLVector< Domain, V > &object) |
template<typename TImageContainer > | |
std::ostream & | operator<< (std::ostream &out, const ImageFactoryFromHDF5< TImageContainer > &object) |
template<typename TImageContainer > | |
std::ostream & | operator<< (std::ostream &out, const ImageFactoryFromImage< TImageContainer > &object) |
template<typename I , typename O , typename P > | |
void | setFromPointsRangeAndPredicate (const I &itb, const I &ite, const O &ito, const P &aPred) |
useful functions | |
template<typename I , typename O , typename F > | |
void | setFromPointsRangeAndFunctor (const I &itb, const I &ite, const O &ito, const F &aFunctor, const typename F::Value &aThreshold=0) |
template<typename I , typename O > | |
void | setFromImage (const I &aImg, const O &ito, const typename I::Value &aThreshold=0) |
template<typename I , typename O > | |
void | setFromImage (const I &aImg, const O &ito, const typename I::Value &low, const typename I::Value &up) |
template<typename It , typename Im > | |
void | imageFromRangeAndValue (const It &itb, const It &ite, Im &aImg, const typename Im::Value &aValue=0) |
template<typename R , typename I > | |
void | imageFromRangeAndValue (const R &aRange, I &aImg, const typename I::Value &aValue=0) |
template<typename I , typename F > | |
void | imageFromFunctor (I &aImg, const F &aFun) |
template<typename I1 , typename I2 > | |
void | imageFromImage (I1 &aImg1, const I2 &aImg2) |
template<typename I , typename S > | |
bool | insertAndSetValue (I &aImg, S &aSet, const typename I::Point &aPoint, const typename I::Value &aValue) |
template<typename I , typename S > | |
bool | insertAndAlwaysSetValue (I &aImg, S &aSet, const typename I::Point &aPoint, const typename I::Value &aValue) |
template<typename I , typename S > | |
bool | findAndGetValue (const I &aImg, const S &aSet, const typename I::Point &aPoint, typename I::Value &aValue) |
template<typename TKSpace , typename TImage , typename TEmbedder > | |
std::ostream & | operator<< (std::ostream &out, const ImageLinearCellEmbedder< TKSpace, TImage, TEmbedder > &object) |
template<typename TImageContainer , typename TImageFactory , typename TImageCacheReadPolicy , typename TImageCacheWritePolicy > | |
std::ostream & | operator<< (std::ostream &out, const TiledImage< TImageContainer, TImageFactory, TImageCacheReadPolicy, TImageCacheWritePolicy > &object) |
std::ostream & | operator<< (std::ostream &out, const Board2D &object) |
template<typename Space , typename KSpace > | |
std::ostream & | operator<< (std::ostream &out, const Board3D< Space, KSpace > &object) |
template<typename Space , typename KSpace > | |
std::ostream & | operator<< (std::ostream &out, const Board3DTo2D< Space, KSpace > &object) |
Color | operator* (const double coeff, const Color &aColor) |
std::ostream & | operator<< (std::ostream &out, const Color &aColor) |
template<typename PValue , int PDefaultColor> | |
std::ostream & | operator<< (std::ostream &out, const ColorBrightnessColorMap< PValue, PDefaultColor > &object) |
template<typename PValue , int PDefaultPreset, int PDefaultFirstColor, int PDefaultLastColor> | |
std::ostream & | operator<< (std::ostream &out, const GradientColorMap< PValue, PDefaultPreset, PDefaultFirstColor, PDefaultLastColor > &object) |
template<typename PValue > | |
std::ostream & | operator<< (std::ostream &out, const GrayscaleColorMap< PValue > &object) |
template<typename PValue , int DefaultCycles> | |
std::ostream & | operator<< (std::ostream &out, const HueShadeColorMap< PValue, DefaultCycles > &object) |
template<typename TColorMap > | |
QuantifiedColorMap< TColorMap > | makeQuantifiedColorMap (TColorMap colormap, int nb=50) |
std::ostream & | operator<< (std::ostream &out, const RandomColorMap &object) |
template<typename TValue , typename CMAP > | |
std::ostream & | operator<< (std::ostream &out, const TickedColorMap< TValue, CMAP > &object) |
template<typename Space , typename KSpace > | |
std::ostream & | operator<< (std::ostream &out, const DGtal::Display3D< Space, KSpace > &object) |
template<typename Space , typename KSpace > | |
void | operator>> (const Display3D< Space, KSpace > &aDisplay3D, DGtal::Mesh< typename Display3D< Space, KSpace >::RealPoint > &aMesh) |
template<typename Space , typename KSpace > | |
void | operator>> (const Display3D< Space, KSpace > &aDisplay3D, std::string aFilename) |
template<typename TPoint > | |
bool | operator<< (Mesh< TPoint > &mesh, const std::string &filename) |
template<int n, typename TRing , typename TAlloc , typename TIterator > | |
std::ostream & | operator<< (std::ostream &out, const MPolynomialReader< n, TRing, TAlloc, TIterator > &object) |
template<int n, typename TRing , class TAlloc > | |
std::istream & | operator>> (std::istream &in, MPolynomial< n, TRing, TAlloc > &aMPolynomial) |
template<typename Word > | |
FILE * | raw_reader_read_word (FILE *fin, Word &aValue) |
template<typename TSpace , typename TKSpace > | |
std::ostream & | operator<< (std::ostream &out, const Viewer3D< TSpace, TKSpace > &object) |
template<typename TImageContainer > | |
bool | operator>> (const TImageContainer &aContainer, const std::string &aFilename) |
template<typename TPoint > | |
bool | operator>> (Mesh< TPoint > &aMesh, const std::string &aFilename) |
template<typename TPoint > | |
bool | operator>> (Mesh< TPoint > &aMesh, std::ostream &out) |
template<typename Word > | |
std::ostream & | raw_writer_write_word (std::ostream &outs, Word value) |
template<typename LHS , typename RHS , typename... Args> | |
ArithmeticConversionType< LHS, RHS > | constructFromArithmeticConversion (LHS const &lhs, RHS const &rhs, Args &&... args) |
Call constructor for the result type of an arithmetic operation. | |
template<typename TSpace > | |
std::ostream & | operator<< (std::ostream &out, const CanonicEmbedder< TSpace > &object) |
template<typename TSpace > | |
std::ostream & | operator<< (std::ostream &out, const HyperRectDomain< TSpace > &object) |
template<typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const IntegralIntervals< TInteger > &object) |
template<Dimension dim, typename Container > | |
std::bitset< dim > | setDimensionsIn (const Container &dimensions) |
template<Dimension dim, typename Container > | |
std::bitset< dim > | setDimensionsNotIn (const Container &dimensions) |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
bool | operator== (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) |
Equality operator between two Points/Vectors. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
bool | operator!= (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) |
Difference operator on Points/Vectors. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
bool | operator< (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) |
Comparison operator on Points/Vectors (LesserThan). | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
bool | operator> (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) |
Comparison operator on Points/Vectors (GreaterThan). | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
bool | operator<= (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) |
Comparison operator on Points/Vectors (LesserOrEqualThan). | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
bool | operator>= (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) |
Comparison operator on Points/Vectors (GreaterOrEqualThan). | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
auto | operator+ (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Addition operator between two Points/Vectors. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
auto | operator- (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Subtraction operator between two Points/Vectors. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
auto | operator* (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Multiplication operator between two Points/Vectors. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
auto | operator/ (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Division operator between two Points/Vectors. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightScalar > | |
auto | operator+ (DGtal::PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, RightScalar const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Addition operator between a Point/Vector and a scalar. | |
template<Dimension ptDim, typename LeftScalar , typename RightEuclideanRing , typename RightContainer > | |
auto | operator+ (LeftScalar const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Addition operator between a scalar and a Point/Vector. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightScalar > | |
auto | operator- (DGtal::PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, RightScalar const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Subtraction operator between a Point/Vector and a scalar. | |
template<Dimension ptDim, typename LeftScalar , typename RightEuclideanRing , typename RightContainer > | |
auto | operator- (LeftScalar const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Substraction operator between a scalar and a Point/Vector. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightScalar > | |
auto | operator* (DGtal::PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, RightScalar const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Multiplication operator between a Point/Vector and a scalar. | |
template<Dimension ptDim, typename LeftScalar , typename RightEuclideanRing , typename RightContainer > | |
auto | operator* (LeftScalar const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Multiplication operator between a scalar and a Point/Vector. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightScalar > | |
auto | operator/ (DGtal::PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, RightScalar const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Division operator between a Point/Vector and a scalar. | |
template<Dimension ptDim, typename LeftScalar , typename RightEuclideanRing , typename RightContainer > | |
auto | operator/ (LeftScalar const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Division operator between a scalar and a Point/Vector. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
DGtal::ArithmeticConversionType< LeftEuclideanRing, RightEuclideanRing > | dotProduct (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) |
Dot product between two points/vectors. | |
template<typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
auto | crossProduct (PointVector< 3, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< 3, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Cross product of two 3D Points/Vectors. | |
template<typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
PointVector< 3, DGtal::ArithmeticConversionType< LeftEuclideanRing, RightEuclideanRing > > | crossProduct (PointVector< 2, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< 2, RightEuclideanRing, RightContainer > const &rhs) |
Cross product of two 2D Points/Vectors. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
double | cosineSimilarity (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) |
Positive angle between two vectors, deduced from their scalar product. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
auto | inf (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Implements the infimum (or greatest lower bound). | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
auto | sup (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs)) |
Implements the supremum (or least upper bound). | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
bool | isLower (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) |
Return true if the first point is below the second point. | |
template<Dimension ptDim, typename LeftEuclideanRing , typename LeftContainer , typename RightEuclideanRing , typename RightContainer > | |
bool | isUpper (PointVector< ptDim, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< ptDim, RightEuclideanRing, RightContainer > const &rhs) |
Return true if the first point is upper the second point. | |
template<Dimension dim, typename Component , typename TC > | |
std::ostream & | operator<< (std::ostream &out, const PointVector< dim, Component, TC > &object) |
Operator <<. | |
template<typename TSpace > | |
std::ostream & | operator<< (std::ostream &out, const RegularPointEmbedder< TSpace > &object) |
template<typename Domain , typename Container > | |
std::ostream & | operator<< (std::ostream &out, const DigitalSetByAssociativeContainer< Domain, Container > &object) |
template<typename Domain , typename Compare > | |
std::ostream & | operator<< (std::ostream &out, const DigitalSetBySTLSet< Domain, Compare > &object) |
template<typename Domain > | |
std::ostream & | operator<< (std::ostream &out, const DigitalSetBySTLVector< Domain > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const DigitalSetDomain< T > &object) |
template<typename TMapImage > | |
std::ostream & | operator<< (std::ostream &out, const DigitalSetFromMap< TMapImage > &object) |
template<typename Key , typename TSplitter , class Hash , class KeyEqual , class UnorderedMapAllocator > | |
void | swap (UnorderedSetByBlock< Key, TSplitter, Hash, KeyEqual, UnorderedMapAllocator > &s1, UnorderedSetByBlock< Key, TSplitter, Hash, KeyEqual, UnorderedMapAllocator > &s2) noexcept |
std::ostream & | operator<< (std::ostream &out, const AngleLinearMinimizer &object) |
template<typename TQuantity , typename TBinner > | |
std::ostream & | operator<< (std::ostream &out, const Histogram< TQuantity, TBinner > &object) |
template<typename TEuclideanRing > | |
std::ostream & | operator<< (std::ostream &that_stream, const LagrangeInterpolation< TEuclideanRing > &that_object_to_display) |
std::ostream & | operator<< (std::ostream &os, const Eigen::ComputationInfo &info) |
template<typename T , DGtal::Dimension M, DGtal::Dimension N> | |
std::ostream & | operator<< (std::ostream &out, const SimpleMatrix< T, M, N > &object) |
template<typename TComponent , DGtal::Dimension TM, DGtal::Dimension TN> | |
SimpleMatrix< TComponent, TM, TN > | operator* (const TComponent &scalar, const SimpleMatrix< TComponent, TM, TN > &matrix) |
template<typename TProfile > | |
std::ostream & | operator<< (std::ostream &out, const MeaningfulScaleAnalysis< TProfile > &object) |
std::ostream & | operator<< (std::ostream &out, const MeasureOfStraightLines &object) |
template<typename TRing , typename TAlloc > | |
void | euclidDiv (const MPolynomial< 1, TRing, TAlloc > &f, const MPolynomial< 1, TRing, TAlloc > &g, MPolynomial< 1, TRing, TAlloc > &q, MPolynomial< 1, TRing, TAlloc > &r) |
template<int N, typename TRing , class TAlloc > | |
std::ostream & | operator<< (std::ostream &out, const MPolynomial< N, TRing, TAlloc > &object) |
template<int n, typename Ring , typename Alloc > | |
MPolynomial< n, Ring, Alloc > | Xe_k (unsigned int k, unsigned int e) |
template<int n, typename Ring > | |
MPolynomial< n, Ring, std::allocator< Ring > > | Xe_k (unsigned int k, unsigned int e) |
template<typename Ring , typename Alloc > | |
MPolynomial< 1, Ring, Alloc > | mmonomial (unsigned int e) |
template<typename Ring , typename Alloc > | |
MPolynomial< 2, Ring, Alloc > | mmonomial (unsigned int e, unsigned int f) |
template<typename Ring , typename Alloc > | |
MPolynomial< 3, Ring, Alloc > | mmonomial (unsigned int e, unsigned int f, unsigned int g) |
template<typename Ring , typename Alloc > | |
MPolynomial< 4, Ring, Alloc > | mmonomial (unsigned int e, unsigned int f, unsigned int g, unsigned int h) |
template<typename Ring > | |
MPolynomial< 1, Ring, std::allocator< Ring > > | mmonomial (unsigned int e) |
template<typename Ring > | |
MPolynomial< 2, Ring, std::allocator< Ring > > | mmonomial (unsigned int e, unsigned int f) |
template<typename Ring > | |
MPolynomial< 3, Ring, std::allocator< Ring > > | mmonomial (unsigned int e, unsigned int f, unsigned int g) |
template<typename Ring > | |
MPolynomial< 4, Ring, std::allocator< Ring > > | mmonomial (unsigned int e, unsigned int f, unsigned int g, unsigned int h) |
template<int N, int n, typename Ring , typename Alloc > | |
MPolynomial< n, Ring, Alloc > | derivative (const MPolynomial< n, Ring, Alloc > &p) |
template<int N, int n, typename Ring > | |
MPolynomial< n, Ring, std::allocator< Ring > > | derivative (const MPolynomial< n, Ring, std::allocator< Ring > > &p) |
template<typename Ring , typename Alloc > | |
void | euclidDiv (const MPolynomial< 1, Ring, Alloc > &f, const MPolynomial< 1, Ring, Alloc > &g, MPolynomial< 1, Ring, Alloc > &q, MPolynomial< 1, Ring, Alloc > &r) |
template<typename Ring > | |
void | euclidDiv (const MPolynomial< 1, Ring, std::allocator< Ring > > &f, const MPolynomial< 1, Ring, std::allocator< Ring > > &g, MPolynomial< 1, Ring, std::allocator< Ring > > &q, MPolynomial< 1, Ring, std::allocator< Ring > > &r) |
template<typename Ring , typename Alloc > | |
MPolynomial< 1, Ring, Alloc > | gcd (const MPolynomial< 1, Ring, Alloc > &f, const MPolynomial< 1, Ring, Alloc > &g) |
template<typename Ring > | |
MPolynomial< 1, Ring, std::allocator< Ring > > | gcd (const MPolynomial< 1, Ring, std::allocator< Ring > > &f, const MPolynomial< 1, Ring, std::allocator< Ring > > &g) |
std::ostream & | operator<< (std::ostream &out, const MultiStatistics &object) |
std::ostream & | operator<< (std::ostream &that_stream, const OrderedLinearRegression &that_object_to_display) |
template<typename TValueFunctor , typename TValue > | |
std::ostream & | operator<< (std::ostream &out, const Profile< TValueFunctor, TValue > &object) |
template<class TDomain , typename T > | |
std::ostream & | operator<< (std::ostream &out, const RealFFT< TDomain, T > &object) |
template<typename TValue > | |
std::ostream & | operator<< (std::ostream &out, const Signal< TValue > &object) |
std::ostream & | operator<< (std::ostream &that_stream, const SimpleLinearRegression &that_object_to_display) |
template<typename TQuantity > | |
std::ostream & | operator<< (std::ostream &thatStream, const Statistic< TQuantity > &that_object_to_display) |
template<typename ShapeA , typename ShapeB > | |
std::ostream & | operator<< (std::ostream &out, const deprecated::DigitalShapesUnion< ShapeA, ShapeB > &object) |
template<typename ShapeA , typename ShapeB > | |
std::ostream & | operator<< (std::ostream &out, const deprecated::DigitalShapesIntersection< ShapeA, ShapeB > &object) |
template<typename ShapeA , typename ShapeB > | |
std::ostream & | operator<< (std::ostream &out, const deprecated::DigitalShapesMinus< ShapeA, ShapeB > &object) |
template<typename ShapeA , typename ShapeB > | |
std::ostream & | operator<< (std::ostream &out, const deprecated::EuclideanShapesUnion< ShapeA, ShapeB > &object) |
template<typename ShapeA , typename ShapeB > | |
std::ostream & | operator<< (std::ostream &out, const deprecated::EuclideanShapesIntersection< ShapeA, ShapeB > &object) |
template<typename ShapeA , typename ShapeB > | |
std::ostream & | operator<< (std::ostream &out, const deprecated::EuclideanShapesMinus< ShapeA, ShapeB > &object) |
template<typename TPoint > | |
std::ostream & | operator<< (std::ostream &out, const CircleFrom2Points< TPoint > &object) |
template<typename TPoint > | |
std::ostream & | operator<< (std::ostream &out, const CircleFrom3Points< TPoint > &object) |
template<typename TSurface , bool isUpward, bool isClosed> | |
std::ostream & | operator<< (std::ostream &out, const DGtal::functors::Point2ShapePredicate< TSurface, isUpward, isClosed > &object) |
template<typename TPoint > | |
std::ostream & | operator<< (std::ostream &out, const StraightLineFrom2Points< TPoint > &object) |
template<typename TSpace , typename TEuclideanShape > | |
std::ostream & | operator<< (std::ostream &out, const GaussDigitizer< TSpace, TEuclideanShape > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const ImplicitBall< T > &object) |
template<typename TKSpace , typename TImplicitFunctionDiff1 , typename TEmbedder > | |
std::ostream & | operator<< (std::ostream &out, const ImplicitFunctionDiff1LinearCellEmbedder< TKSpace, TImplicitFunctionDiff1, TEmbedder > &object) |
template<typename TKSpace , typename TImplicitFunction , typename TEmbedder > | |
std::ostream & | operator<< (std::ostream &out, const ImplicitFunctionLinearCellEmbedder< TKSpace, TImplicitFunction, TEmbedder > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const ImplicitHyperCube< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const ImplicitNorm1Ball< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const ImplicitPolynomial3Shape< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const ImplicitRoundedHyperCube< T > &object) |
template<typename TPoint > | |
std::ostream & | operator<< (std::ostream &out, const Mesh< TPoint > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const AccFlower2D< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Astroid2D< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Ball2D< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Ball3D< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Ellipse2D< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Flower2D< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const Lemniscate2D< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const NGon2D< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const StarShaped2D< T > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const StarShaped3D< T > &object) |
template<typename TPoint > | |
std::ostream & | operator<< (std::ostream &out, const PolygonalSurface< TPoint > &object) |
template<typename TDomain > | |
std::ostream & | operator<< (std::ostream &out, const Shapes< TDomain > &object) |
template<typename TRealPoint , typename TRealVector > | |
std::ostream & | operator<< (std::ostream &out, const SurfaceMesh< TRealPoint, TRealVector > &object) |
template<typename TPoint > | |
std::ostream & | operator<< (std::ostream &out, const TriangulatedSurface< TPoint > &object) |
template<typename TKSpace > | |
std::ostream & | operator<< (std::ostream &out, const CanonicCellEmbedder< TKSpace > &object) |
template<typename TDigitalSurface > | |
std::ostream & | operator<< (std::ostream &out, const CanonicDigitalSurfaceEmbedder< TDigitalSurface > &object) |
template<typename TKSpace > | |
std::ostream & | operator<< (std::ostream &out, const CanonicSCellEmbedder< TKSpace > &object) |
template<typename TKSpace , typename TCellContainer > | |
CubicalComplex< TKSpace, TCellContainer > & | operator|= (CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
CubicalComplex< TKSpace, TCellContainer > & | operator&= (CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
CubicalComplex< TKSpace, TCellContainer > & | operator^= (CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
CubicalComplex< TKSpace, TCellContainer > & | operator-= (CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
CubicalComplex< TKSpace, TCellContainer > | operator| (const CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
CubicalComplex< TKSpace, TCellContainer > | operator& (const CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
CubicalComplex< TKSpace, TCellContainer > | operator^ (const CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
CubicalComplex< TKSpace, TCellContainer > | operator- (const CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
CubicalComplex< TKSpace, TCellContainer > | operator~ (const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
CubicalComplex< TKSpace, TCellContainer > | operator* (const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
bool | operator== (const CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
bool | operator!= (const CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
bool | operator<= (const CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
bool | operator>= (const CubicalComplex< TKSpace, TCellContainer > &, const CubicalComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
std::ostream & | operator<< (std::ostream &out, const CubicalComplex< TKSpace, TCellContainer > &object) |
template<typename TKSpace , typename TDigitalSet > | |
std::ostream & | operator<< (std::ostream &out, const DigitalSetBoundary< TKSpace, TDigitalSet > &object) |
template<typename TDigitalSurfaceContainer > | |
std::ostream & | operator<< (std::ostream &out, const DigitalSurface< TDigitalSurfaceContainer > &object) |
template<typename TDigitalSurfaceTracker > | |
std::ostream & | operator<< (std::ostream &out, const DigitalSurface2DSlice< TDigitalSurfaceTracker > &object) |
template<typename TForegroundAdjacency , typename TBackgroundAdjacency > | |
std::ostream & | operator<< (std::ostream &out, const DigitalTopology< TForegroundAdjacency, TBackgroundAdjacency > &object) |
template<typename TDomain , typename TAdjacency > | |
std::ostream & | operator<< (std::ostream &out, const DomainAdjacency< TDomain, TAdjacency > &object) |
template<typename TKSpace , typename TSurfelPredicate > | |
std::ostream & | operator<< (std::ostream &out, const ExplicitDigitalSurface< TKSpace, TSurfelPredicate > &object) |
std::ostream & | operator<< (std::ostream &out, const HalfEdgeDataStructure &object) |
template<typename TKSpace , typename TImage > | |
std::ostream & | operator<< (std::ostream &out, const DGtal::functors::BoundaryPredicate< TKSpace, TImage > &object) |
template<typename TKSpace , typename TImage > | |
std::ostream & | operator<< (std::ostream &out, const DGtal::functors::FrontierPredicate< TKSpace, TImage > &object) |
template<typename TKSpace > | |
std::ostream & | operator<< (std::ostream &out, const Surfaces< TKSpace > &object) |
template<typename TKSpace , typename TPointPredicate > | |
std::ostream & | operator<< (std::ostream &out, const ImplicitDigitalSurface< TKSpace, TPointPredicate > &object) |
template<typename TDigitalSurfaceContainer > | |
std::ostream & | operator<< (std::ostream &out, const IndexedDigitalSurface< TDigitalSurfaceContainer > &object) |
template<Dimension dim, typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const KhalimskyPreCell< dim, TInteger > &object) |
template<Dimension dim, typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const SignedKhalimskyPreCell< dim, TInteger > &object) |
template<Dimension dim, typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const KhalimskyPreSpaceND< dim, TInteger > &object) |
Overloads 'operator<<' for displaying objects of class 'KhalimskyPreSpaceND'. | |
template<Dimension dim, typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const KhalimskyCell< dim, TInteger > &object) |
template<Dimension dim, typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const SignedKhalimskyCell< dim, TInteger > &object) |
template<Dimension dim, typename TInteger > | |
std::ostream & | operator<< (std::ostream &out, const KhalimskySpaceND< dim, TInteger > &object) |
Overloads 'operator<<' for displaying objects of class 'KhalimskySpaceND'. | |
template<typename TKSpace , typename TSurfelPredicate > | |
std::ostream & | operator<< (std::ostream &out, const LightExplicitDigitalSurface< TKSpace, TSurfelPredicate > &object) |
template<typename TKSpace , typename TPointPredicate > | |
std::ostream & | operator<< (std::ostream &out, const LightImplicitDigitalSurface< TKSpace, TPointPredicate > &object) |
template<typename TSpace , Dimension maxNorm1> | |
std::ostream & | operator<< (std::ostream &out, const MetricAdjacency< TSpace, maxNorm1, TSpace::dimension > &object) |
template<typename TDigitalTopology , typename TDigitalSet > | |
std::ostream & | operator<< (std::ostream &out, const Object< TDigitalTopology, TDigitalSet > &object) |
template<typename TKSpace , typename TSurfelSet > | |
std::ostream & | operator<< (std::ostream &out, const SetOfSurfels< TKSpace, TSurfelSet > &object) |
template<Dimension dim> | |
std::ostream & | operator<< (std::ostream &out, const SurfelAdjacency< dim > &object) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &out, const SurfelNeighborhood< T > &object) |
template<typename TDigitalSurfaceTracker > | |
std::ostream & | operator<< (std::ostream &out, const UmbrellaComputer< TDigitalSurfaceTracker > &object) |
template<typename TKSpace , typename TCellContainer > | |
VoxelComplex< TKSpace, TCellContainer > & | operator-= (VoxelComplex< TKSpace, TCellContainer > &, const VoxelComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
VoxelComplex< TKSpace, TCellContainer > | operator- (const VoxelComplex< TKSpace, TCellContainer > &, const VoxelComplex< TKSpace, TCellContainer > &) |
template<typename TKSpace , typename TCellContainer > | |
std::ostream & | operator<< (std::ostream &out, const VoxelComplex< TKSpace, TCellContainer > &object) |
template<typename KSpace , typename PointPredicate > | |
bool | testImplicitDigitalSurface (const KSpace &K, const PointPredicate &pp, const typename KSpace::Surfel &bel) |
template<typename KSpace , typename PointPredicate > | |
bool | testLightImplicitDigitalSurface (const KSpace &K, const PointPredicate &pp, const typename KSpace::Surfel &bel) |
Functions related to BoundedLatticePolytope (output, dilation, Minkowski sum) | |
template<typename TSpace > | |
std::ostream & | operator<< (std::ostream &out, const BoundedLatticePolytope< TSpace > &object) |
template<typename TSpace > | |
BoundedLatticePolytope< TSpace > | operator* (typename BoundedLatticePolytope< TSpace >::Integer t, const BoundedLatticePolytope< TSpace > &P) |
template<typename TSpace > | |
BoundedLatticePolytope< TSpace > | operator+ (const BoundedLatticePolytope< TSpace > &P, typename BoundedLatticePolytope< TSpace >::UnitSegment s) |
template<typename TSpace > | |
BoundedLatticePolytope< TSpace > | operator+ (const BoundedLatticePolytope< TSpace > &P, typename BoundedLatticePolytope< TSpace >::UnitCell c) |
template<typename TSpace > | |
BoundedLatticePolytope< TSpace > | operator+ (const BoundedLatticePolytope< TSpace > &P, typename BoundedLatticePolytope< TSpace >::RightStrictUnitSegment s) |
template<typename TSpace > | |
BoundedLatticePolytope< TSpace > | operator+ (const BoundedLatticePolytope< TSpace > &P, typename BoundedLatticePolytope< TSpace >::RightStrictUnitCell c) |
template<typename TSpace > | |
BoundedLatticePolytope< TSpace > | operator+ (const BoundedLatticePolytope< TSpace > &P, typename BoundedLatticePolytope< TSpace >::LeftStrictUnitSegment s) |
template<typename TSpace > | |
BoundedLatticePolytope< TSpace > | operator+ (const BoundedLatticePolytope< TSpace > &P, typename BoundedLatticePolytope< TSpace >::LeftStrictUnitCell c) |
Functions related to BoundedRationalPolytope (output, dilation, Minkowski sum) | |
template<typename TSpace > | |
std::ostream & | operator<< (std::ostream &out, const BoundedRationalPolytope< TSpace > &object) |
template<typename TSpace > | |
BoundedRationalPolytope< TSpace > | operator* (typename BoundedRationalPolytope< TSpace >::Integer t, const BoundedRationalPolytope< TSpace > &P) |
template<typename TSpace > | |
BoundedRationalPolytope< TSpace > | operator* (typename BoundedRationalPolytope< TSpace >::Rational r, const BoundedRationalPolytope< TSpace > &P) |
template<typename TSpace > | |
BoundedRationalPolytope< TSpace > | operator+ (const BoundedRationalPolytope< TSpace > &P, typename BoundedRationalPolytope< TSpace >::UnitSegment s) |
template<typename TSpace > | |
BoundedRationalPolytope< TSpace > | operator+ (const BoundedRationalPolytope< TSpace > &P, typename BoundedRationalPolytope< TSpace >::UnitCell c) |
Functions related to CellGeometry (output) | |
template<typename TKSpace > | |
std::ostream & | operator<< (std::ostream &out, const CellGeometry< TKSpace > &object) |
Functions related to DigitalConvexity (output) | |
template<typename TKSpace > | |
std::ostream & | operator<< (std::ostream &out, const DigitalConvexity< TKSpace > &object) |
Functions related to TangencyComputer (output) | |
template<typename TKSpace > | |
std::ostream & | operator<< (std::ostream &out, const TangencyComputer< TKSpace > &object) |
Variables | |
Trace | trace |
TraceWriterTerm | traceWriterTerm (std::cerr) |
const auto | ITK_IO_IMAGE_EXT |
static std::size_t const | HALF_EDGE_INVALID_INDEX = boost::integer_traits<std::size_t>::const_max |
DGtal
is the top-level namespace which contains all DGtal functions and types.
[PrivateMembers]
for embedding
DGtal Global variables
This macro is necessary for using spirit/phoenix functions 'at' during the construction of the semantic tree. This macro is necessary for using spirit/phoenix functions 'at' during the construction of the semantic tree. This macro is necessary for using spirit/phoenix functions 'at' during the construction of the semantic tree.
using DGtal::ArithmeticConversionType = typename ArithmeticConversionTraits<T, U>::type |
Result type of arithmetic binary operators between two given types.
T | First operand type. |
U | Second operand type. |
Definition at line 135 of file ArithmeticConversionTraits.h.
typedef mpz_class DGtal::BigInteger |
Multi-precision integer with GMP implementation.
Definition at line 79 of file BasicTypes.h.
typedef DGtal::uint32_t DGtal::Dimension |
typedef boost::int16_t DGtal::int16_t |
signed 16-bit integer.
Definition at line 70 of file BasicTypes.h.
typedef boost::int32_t DGtal::int32_t |
signed 32-bit integer.
Definition at line 72 of file BasicTypes.h.
typedef boost::int64_t DGtal::int64_t |
signed 94-bit integer.
Definition at line 74 of file BasicTypes.h.
typedef boost::int8_t DGtal::int8_t |
signed 8-bit integer.
Definition at line 68 of file BasicTypes.h.
using DGtal::NaiveDSS8Computer = ArithmeticalDSSComputer<TIterator, TInteger, 8> |
Aim: This is an alias to ArithmeticalDSS that is devoted to the dynamic recognition of naive and simply 8-connected digital straight segments (DSS) along any sequence of digital points.
See Digital straight lines and segments for further details. See also exampleArithmeticalDSSComputer.cpp for a basic example using StandardDSS4Computer. The use of NaiveDSS8Computer is quite similar.
TIterator | type of iterator on 2d digital points, at least readable and forward. |
TInteger | type of integers used for the computation of remainders, which is a model of CInteger. |
This alias is a model of CDynamicBidirectionalSegmentComputer. It is also default constructible, copy constructible, assignable and equality comparable.
Definition at line 486 of file ArithmeticalDSSComputer.h.
Definition at line 43 of file NeighborhoodConfigurationsHelper.h.
typedef unsigned int DGtal::Order |
using DGtal::StandardDSS4Computer = ArithmeticalDSSComputer<TIterator, TInteger, 4> |
Aim: This is an alias to ArithmeticalDSS that is devoted to the dynamic recognition of standard and simply 4-connected digital straight segments (DSS) along any sequence of digital points.
Before using a DSS computer, you must include the following header:
Then, you can construct a DSS computer as follows:
The extention is simply done as follows:
See Digital straight lines and segments for further details.
TIterator | type of iterator on 2d digital points, at least readable and forward. |
TInteger | type of integers used for the computation of remainders, which is a model of CInteger. |
This alias is a model of CDynamicBidirectionalSegmentComputer. It is also default constructible, copy constructible, assignable and equality comparable.
Definition at line 462 of file ArithmeticalDSSComputer.h.
typedef boost::uint16_t DGtal::uint16_t |
unsigned 16-bit integer.
Definition at line 61 of file BasicTypes.h.
typedef boost::uint32_t DGtal::uint32_t |
unsigned 32-bit integer.
Definition at line 63 of file BasicTypes.h.
typedef boost::uint64_t DGtal::uint64_t |
unsigned 64-bit integer.
Definition at line 65 of file BasicTypes.h.
typedef boost::uint8_t DGtal::uint8_t |
unsigned 8-bit integer.
Definition at line 59 of file BasicTypes.h.
enum DGtal::BoundEnum |
Bounding type of a number.
Enumerator | |
---|---|
BOUNDED | |
UNBOUNDED | |
BOUND_UNKNOWN |
Definition at line 54 of file NumberTraits.h.
enum DGtal::Closest |
Enumerator | |
---|---|
CMAP_CUSTOM | |
CMAP_GRAYSCALE | |
CMAP_SPRING | |
CMAP_SUMMER | |
CMAP_AUTUMN | |
CMAP_WINTER | |
CMAP_COOL | |
CMAP_COPPER | |
CMAP_HOT | |
CMAP_JET | |
CMAP_VIRIDIS |
Definition at line 60 of file GradientColorMap.h.
enum DGtal::Connectedness |
Kinds of connectedness for an object or a graph.
Enumerator | |
---|---|
DISCONNECTED | |
CONNECTED | |
UNKNOWN |
Definition at line 50 of file Topology.h.
Possible properties of digital topologies.
Enumerator | |
---|---|
UNKNOWN_DT | |
NOT_JORDAN_DT | |
JORDAN_DT |
Definition at line 55 of file DigitalTopology.h.
enum DGtal::Duality |
Enumerator | |
---|---|
NORMAL_CONTAINER_I | |
VTKIMAGEDATA_CONTAINER_I | |
ITKIMAGEDATA_CONTAINER_I |
Definition at line 59 of file ImageSelector.h.
enum DGtal::Orientation |
|
strong |
Probing mode for plane-probing estimators. This mode allows to select the good PlaneProbingNeighborhood subclass when constructing a PlaneProbingTetrahedronEstimator.
Enumerator | |
---|---|
H | The H-neighborhood composed of 6 points on an hexagon, see PlaneProbingHNeighborhood. |
R | The R-neighborhood composed of 6 rays, see PlaneProbingRNeighborhood. |
R1 | The R-neighborhood but with an optimization to reduce the number of calls to the predicate, see PlaneProbingR1Neighborhood. |
Definition at line 58 of file PlaneProbingTetrahedronEstimator.h.
enum DGtal::SignEnum |
Sign type of a number.
Enumerator | |
---|---|
SIGNED | |
UNSIGNED | |
SIGN_UNKNOWN |
Definition at line 57 of file NumberTraits.h.
Possible embeddings for surfel as point(s)
Enumerator | |
---|---|
Pointels | |
InnerSpel | |
OuterSpel |
Definition at line 58 of file VoronoiCovarianceMeasureOnDigitalSurface.h.
|
inline |
Moves ic at position @ it + n
ic | any (circular)iterator |
n | any positive distance |
IC | any model o fiterator or circulator |
Referenced by testAdvance().
|
inline |
Definition at line 65 of file Assert.h.
References DGtal::Trace::error(), and trace.
|
inline |
BackInsertionSequenceToStackAdapter< TSequence > DGtal::backStack | ( | TSequence & | aSequence | ) |
Function returning an object of class 'BackInsertionSequenceToStackAdapter'
aSequence | container to adapt. |
TSequence | a model of back insertion sequence |
|
inline |
Call constructor for the result type of an arithmetic operation.
LHS | First operand type. |
RHS | Second operand type. |
Args | Types of the parameters forwarded to the constructor. |
lhs | First operand (only used for auto-deducing its type). |
rhs | Second operand (only used for auto-deducing its type). |
args | Parameters forwarded to the constructor. |
Definition at line 182 of file ArithmeticConversionTraits.h.
|
inline |
Positive angle between two vectors, deduced from their scalar product.
Referenced by TEST_CASE().
|
inline |
Cross product of two 2D Points/Vectors.
|
inline |
Cross product of two 3D Points/Vectors.
Referenced by DGtal::SphericalTriangle< TSpace >::algebraicArea(), DGtal::NormalCycleFormula< TRealPoint, TRealVector >::area(), laplacian(), DGtal::CorrectedNormalCurrentFormula< TRealPoint, TRealVector >::mu0ConstantU(), DGtal::CorrectedNormalCurrentFormula< TRealPoint, TRealVector >::mu0InterpolatedU(), DGtal::CorrectedNormalCurrentFormula< TRealPoint, TRealVector >::muXYConstantUAtEdge(), DGtal::NormalCycleFormula< TRealPoint, TRealVector >::normal(), SCENARIO(), SCENARIO(), SCENARIO(), TEST_CASE(), and TEST_CASE().
|
inline |
Computes the partial derivative of p with respect to the N-th indeterminate. We assume that 0 <= N < n.
p | an arbitrary polynomial. |
N | the variable used for derivation. |
n | the number of variables or indeterminates. |
Ring | the type chosen for the polynomial, defines also the type of the coefficents (generally int, float or double). |
Alloc | is an allocator for Ring, for example std::allocator<Ring>; this is also the default parameter. Usually this parameter does not needs to be changed. |
Definition at line 1976 of file MPolynomial.h.
References DGtal::MPolynomialDerivativeComputer< N, n, Ring, Alloc >::computeDerivative().
Referenced by DGtal::dec_helper::averageOperator01(), DGtal::ATSolver2D< TKSpace, TLinearAlgebra >::initOperators(), main(), and testMPolynomial().
|
inline |
Computes the partial derivative of p with respect to the N-th indeterminate. We assume that 0 <= N < n.
p | an arbitrary polynomial. |
N | the variable used for derivation. |
n | the number of variables or indeterminates. |
Ring | the type chosen for the polynomial, defines also the type of the coefficents (generally int, float or double). |
Definition at line 1999 of file MPolynomial.h.
|
inline |
Dot product between two points/vectors.
Referenced by TEST_CASE().
void DGtal::euclidDiv | ( | const MPolynomial< 1, Ring, Alloc > & | f, |
const MPolynomial< 1, Ring, Alloc > & | g, | ||
MPolynomial< 1, Ring, Alloc > & | q, | ||
MPolynomial< 1, Ring, Alloc > & | r ) |
Computes q and r such that f = q g + r and degree(r) < degree(g).
Definition at line 2013 of file MPolynomial.h.
void DGtal::euclidDiv | ( | const MPolynomial< 1, Ring, std::allocator< Ring > > & | f, |
const MPolynomial< 1, Ring, std::allocator< Ring > > & | g, | ||
MPolynomial< 1, Ring, std::allocator< Ring > > & | q, | ||
MPolynomial< 1, Ring, std::allocator< Ring > > & | r ) |
Computes q and r such that f = q g + r and degree(r) < degree(g).
Definition at line 2043 of file MPolynomial.h.
References euclidDiv().
void DGtal::euclidDiv | ( | const MPolynomial< 1, TRing, TAlloc > & | f, |
const MPolynomial< 1, TRing, TAlloc > & | g, | ||
MPolynomial< 1, TRing, TAlloc > & | q, | ||
MPolynomial< 1, TRing, TAlloc > & | r ) |
Forward declaration, to be able to declare this as a friend.
Referenced by euclidDiv(), and gcd().
|
inline |
|
inline |
bool DGtal::findAndGetValue | ( | const I & | aImg, |
const S & | aSet, | ||
const typename I::Point & | aPoint, | ||
typename I::Value & | aValue ) |
Read the value contained in aImg at aPoint if aPoint belongs to aSet.
aImg | an image |
aSet | a digital set |
aPoint | a point |
aValue | (returned) value |
I | any model of CConstImage |
S | any model of CDigitalSet |
The general behavior is like:
However, this code is specialized if I is an ImageContainerBySTLMap and S is a DigitalSetFromMap<I> as follows:
void DGtal::firstMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end ) |
Computes the first maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of segment computer |
Definition at line 508 of file SegmentComputerUtils.h.
References firstMaximalSegment().
void DGtal::firstMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
DGtal::BidirectionalSegmentComputer | ) |
Computes the first maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of CBidirectionalSegmentComputer |
Definition at line 449 of file SegmentComputerUtils.h.
References maximalExtension(), and oppositeEndMaximalExtension().
void DGtal::firstMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
DGtal::DynamicBidirectionalSegmentComputer | ) |
Computes the first maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of CDynamicBidirectionalSegmentComputer |
Definition at line 490 of file SegmentComputerUtils.h.
References firstMaximalSegment().
void DGtal::firstMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
DGtal::DynamicSegmentComputer | ) |
Computes the first maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of CDynamicSegmentComputer |
Definition at line 471 of file SegmentComputerUtils.h.
References firstMaximalSegment().
void DGtal::firstMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
DGtal::ForwardSegmentComputer | ) |
Computes the first maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of CForwardSegmentComputer |
Definition at line 412 of file SegmentComputerUtils.h.
References isNotEmpty(), and longestSegment().
Referenced by firstMaximalSegment(), firstMaximalSegment(), firstMaximalSegment(), main(), mostCenteredMaximalSegment(), nextMaximalSegment(), and nextMaximalSegment().
FrontInsertionSequenceToStackAdapter< TSequence > DGtal::frontStack | ( | TSequence & | aSequence | ) |
Function returning an object of class 'FrontInsertionSequenceToStackAdapter'
aSequence | container to adapt. |
TSequence | a model of back insertion sequence |
MPolynomial< 1, Ring, Alloc > DGtal::gcd | ( | const MPolynomial< 1, Ring, Alloc > & | f, |
const MPolynomial< 1, Ring, Alloc > & | g ) |
Compute the monic greatest common divisor of f and g using the Euclidean Algorithm.
Definition at line 2057 of file MPolynomial.h.
References euclidDiv().
Referenced by gcd(), and testMPolynomial().
MPolynomial< 1, Ring, std::allocator< Ring > > DGtal::gcd | ( | const MPolynomial< 1, Ring, std::allocator< Ring > > & | f, |
const MPolynomial< 1, Ring, std::allocator< Ring > > & | g ) |
Compute the monic greatest common divisor of f and g using the Euclidean Algorithm.
Definition at line 2086 of file MPolynomial.h.
References gcd().
IC DGtal::getMiddleIterator | ( | const IC & | itb, |
const IC & | ite ) |
Computes the middle iterator of a given range, i.e. itb + (ite-itb)/2)
itb | begin iterator of a range |
ite | end iterator of a range |
IC | iterator or circulator |
Definition at line 151 of file SegmentComputerUtils.h.
References getMiddleIterator().
IC DGtal::getMiddleIterator | ( | const IC & | itb, |
const IC & | ite, | ||
BidirectionalCategory | ) |
Specialization for bidirectional category NB: in O(ite-itb)
Definition at line 100 of file SegmentComputerUtils.h.
IC DGtal::getMiddleIterator | ( | const IC & | itb, |
const IC & | ite, | ||
ForwardCategory | ) |
Specialization for forward category NB: in O(ite-itb)
Definition at line 122 of file SegmentComputerUtils.h.
IC DGtal::getMiddleIterator | ( | const IC & | itb, |
const IC & | ite, | ||
RandomAccessCategory | ) |
Specialization for random access category
Definition at line 87 of file SegmentComputerUtils.h.
References getMiddleIterator().
Referenced by getMiddleIterator(), getMiddleIterator(), and mostCenteredMaximalSegment().
size_t DGtal::hash_value | ( | const KhalimskyCell< dim, TInteger > & | cell | ) |
Hash function for Khalimsky unsigned cells.
cell | input signed cell. |
void DGtal::imageFromFunctor | ( | I & | aImg, |
const F & | aFun ) |
In a window corresponding to the domain of aImg, copy the values of aFun into aImg
aImg | (returned) image |
aFun | a unary functor |
I | any model of CImage |
F | any model of CPointFunctor |
Referenced by testImageFromSet().
void DGtal::imageFromImage | ( | I1 & | aImg1, |
const I2 & | aImg2 ) |
Copy the values of aImg2 into aImg1 .
aImg1 | the image to fill |
aImg2 | the image to copy |
I1 | any model of CImage |
I2 | any model of CConstImage |
Referenced by testImageFromSet().
void DGtal::imageFromRangeAndValue | ( | const It & | itb, |
const It & | ite, | ||
Im & | aImg, | ||
const typename Im::Value & | aValue = 0 ) |
Set the values of aImg at aValue for each points of the range [ itb , ite )
itb | begin iterator on points |
ite | end iterator on points |
aImg | (returned) image |
aValue | any value (default: 0) |
It | any model of forward iterator |
Im | any model of CImage |
Referenced by main(), and testImageFromSet().
void DGtal::imageFromRangeAndValue | ( | const R & | aRange, |
I & | aImg, | ||
const typename I::Value & | aValue = 0 ) |
Set the values of aImg at aValue for each points of the range aRange
aRange | any range |
aImg | (returned) image |
aValue | any value (default: 0) |
R | any model of CConstSinglePassRange |
I | any model of CImage |
|
inline |
Implements the infimum (or greatest lower bound).
It means the point whose coordinates are exactly the minimum of the two points coordinate by coordinate.
Referenced by TEST_CASE().
bool DGtal::insertAndAlwaysSetValue | ( | I & | aImg, |
S & | aSet, | ||
const typename I::Point & | aPoint, | ||
const typename I::Value & | aValue ) |
Insert aPoint in aSet and set aValue at aPoint in aImg.
aImg | an image |
aSet | a digital set |
aPoint | a point |
aValue | a value |
I | any model of CImage |
S | any model of CDigitalSet |
The general behavior is like:
However, this code is specialized if I is an ImageContainerBySTLMap and S is a DigitalSetFromMap<I> as follows:
bool DGtal::insertAndSetValue | ( | I & | aImg, |
S & | aSet, | ||
const typename I::Point & | aPoint, | ||
const typename I::Value & | aValue ) |
Insert aPoint in aSet and if (and only if) aPoint is a newly inserted point. Then set aValue at aPoint in aImg.
aImg | an image |
aSet | a digital set |
aPoint | a point |
aValue | a value |
I | any model of CImage |
S | any model of CDigitalSet |
The general behavior is like:
However, this code is specialized if I is an ImageContainerBySTLMap and S is a DigitalSetFromMap<I> as follows:
|
inline |
Checks if the range [ itb , ite ) is empty
itb | begin iterator of the range |
ite | end iterator of the range |
IC | model of iterator or circulator |
|
inline |
Return true if the first point is below the second point.
Referenced by TEST_CASE().
|
inline |
Checks if the range [ itb , ite ) is not empty
itb | begin iterator of the range |
ite | end iterator of the range |
IC | model of iterator or circulator |
Referenced by displayAll(), firstMaximalSegment(), maximalRetraction(), mostCenteredMaximalSegment(), mostCenteredMaximalSegment(), nextMaximalSegment(), oppositeEndMaximalRetraction(), previousMaximalSegment(), previousMaximalSegment(), previousMaximalSegment(), test(), and testIsNotEmpty().
|
inline |
Return true if the first point is upper the second point.
Referenced by TEST_CASE().
void DGtal::lastMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end ) |
Computes the last maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of segment computer |
Definition at line 776 of file SegmentComputerUtils.h.
References lastMaximalSegment().
void DGtal::lastMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
BidirectionalSegmentComputer | ) |
Computes the last maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of CBidirectionalSegmentComputer |
Definition at line 717 of file SegmentComputerUtils.h.
References maximalExtension(), and oppositeEndMaximalExtension().
void DGtal::lastMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
DGtal::DynamicBidirectionalSegmentComputer | ) |
Computes the last maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of CDynamicBidirectionalSegmentComputer |
Definition at line 758 of file SegmentComputerUtils.h.
References lastMaximalSegment().
void DGtal::lastMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
DGtal::DynamicSegmentComputer | ) |
Computes the last maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of CDynamicSegmentComputer |
Definition at line 739 of file SegmentComputerUtils.h.
References lastMaximalSegment().
void DGtal::lastMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
DGtal::ForwardSegmentComputer | ) |
Computes the last maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of CForwardSegmentComputer |
Definition at line 681 of file SegmentComputerUtils.h.
References longestSegment().
Referenced by lastMaximalSegment(), lastMaximalSegment(), lastMaximalSegment(), main(), previousMaximalSegment(), and previousMaximalSegment().
void DGtal::longestSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | end ) |
Computes the longest possible segment from [i]
s | any instance of segment computer |
i | a given ConstIterator |
end | any end ConstIterator |
SC | any model of segment computer |
Definition at line 391 of file SegmentComputerUtils.h.
References longestSegment().
void DGtal::longestSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | end, | ||
CirculatorType | ) |
Specialization for Circulator type
Definition at line 374 of file SegmentComputerUtils.h.
References maximalExtension().
void DGtal::longestSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | end, | ||
IteratorType | ) |
Specialization for Iterator type
Definition at line 359 of file SegmentComputerUtils.h.
References maximalExtension().
Referenced by drawingTestStabbingCircleComputer(), firstMaximalSegment(), lastMaximalSegment(), longestSegment(), mostCenteredMaximalSegment(), testRecognition(), and testStabbingCircleComputer().
ArrayImageAdapter< decltype(((TImage *) nullptr) ->begin()), TDomain > DGtal::makeArrayImageAdapterFromImage | ( | TImage & | anImage | ) |
Returns an ArrayImageAdapter from an image.
The viewable domain will be the same as the given image domain.
anImage | The image that models the CConstImage concept. |
Definition at line 521 of file ArrayImageAdapter.h.
ArrayImageAdapter< decltype(((TImage *) nullptr) ->begin()), TDomain > DGtal::makeArrayImageAdapterFromImage | ( | TImage & | anImage, |
TDomain const & | aViewDomain ) |
Returns an ArrayImageAdapter from an image and a viewable domain.
anImage | The image that models the CConstImage concept. |
aViewDomain | The viewable domain of this image. |
Definition at line 500 of file ArrayImageAdapter.h.
Referenced by moduleImages_example().
ArrayImageAdapter< TArrayIterator, TDomain > DGtal::makeArrayImageAdapterFromIterator | ( | TArrayIterator | anArrayIterator, |
TDomain const & | aFullDomain ) |
Returns an ArrayImageAdapter from an iterator and a full domain.
The viewable domain will be the same as the full domain.
anArrayIterator | A random-access iterator on the datas. |
aFullDomain | The domain span by the given iterator. |
Definition at line 483 of file ArrayImageAdapter.h.
ArrayImageAdapter< TArrayIterator, TDomain > DGtal::makeArrayImageAdapterFromIterator | ( | TArrayIterator | anArrayIterator, |
TDomain const & | aFullDomain, | ||
TDomain const & | aViewDomain ) |
Returns an ArrayImageAdapter from an iterator, a full domain and a viewable domain.
anArrayIterator | A random-access iterator on the datas. |
aFullDomain | The domain span by the given iterator. |
aViewDomain | The viewable domain of this image. |
Definition at line 465 of file ArrayImageAdapter.h.
Referenced by moduleImages_example().
QuantifiedColorMap< TColorMap > DGtal::makeQuantifiedColorMap | ( | TColorMap | colormap, |
int | nb = 50 ) |
Template function to simplify the build of QuantifiedColorMap object.
TColorMap | an arbitrary model of concepts::CColorMap. |
[in] | colormap | the colormap to quantify in nb colors. |
[in] | nb | the targeted maximum number of colors (default is 50). |
Definition at line 113 of file QuantifiedColorMap.h.
ShroudsRegularization< TDigitalSurfaceContainer > DGtal::makeShroudsRegularization | ( | CountedPtr< IndexedDigitalSurface< TDigitalSurfaceContainer > > | surface, |
double | eps = 0.00001 ) |
Helper function for constructing a ShroudsRegularization from a (closed) surface.
TDigitalSurfaceContainer | any digital surface container (a model concepts::CDigitalSurfaceContainer), for instance a SetOfSurfels. |
surface | a counted pointer on an indexed digital surface. |
eps | the bounds for varying the positions of vertices in ]0,1[ |
Definition at line 586 of file ShroudsRegularization.h.
References surface.
void DGtal::maximalExtension | ( | SC & | s, |
const typename SC::ConstIterator & | , | ||
CirculatorType | ) |
Specialization for Circulator type
Definition at line 174 of file SegmentComputerUtils.h.
void DGtal::maximalExtension | ( | SC & | s, |
const typename SC::ConstIterator & | end ) |
Calls s.extendFront() while possible
s | any instance of segment computer |
end | any ConstIterator |
SC | any model of segment computer |
Definition at line 188 of file SegmentComputerUtils.h.
References maximalExtension().
void DGtal::maximalExtension | ( | SC & | s, |
const typename SC::ConstIterator & | end, | ||
IteratorType | ) |
Specialization for Iterator type
Definition at line 164 of file SegmentComputerUtils.h.
Referenced by firstMaximalSegment(), lastMaximalSegment(), longestSegment(), longestSegment(), maximalExtension(), mostCenteredMaximalSegment(), and nextMaximalSegment().
void DGtal::maximalRetraction | ( | SC & | s, |
const typename SC::ConstIterator & | end ) |
Calls s.retractBack() while s.isExtendableFront() returns false
s | any instance of segment computer |
end | any ConstIterator |
SC | any model of segment computer |
Definition at line 323 of file SegmentComputerUtils.h.
References isNotEmpty().
Referenced by nextMaximalSegment().
bool DGtal::maximalSymmetricExtension | ( | SC & | s, |
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end ) |
Calls alternatively s.extendFront() and s.extendBack() while it is possible
s | any instance of (bidirectional)segment computer |
begin | begin iterator of a range |
end | end iterator of a range |
SC | any model of CBidirectionalSegmentComputer |
Definition at line 305 of file SegmentComputerUtils.h.
References maximalSymmetricExtension().
bool DGtal::maximalSymmetricExtension | ( | SC & | s, |
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
CirculatorType | ) |
Specialization for Circulator type
Definition at line 270 of file SegmentComputerUtils.h.
bool DGtal::maximalSymmetricExtension | ( | SC & | s, |
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
IteratorType | ) |
Specialization for Iterator type
Definition at line 236 of file SegmentComputerUtils.h.
Referenced by maximalSymmetricExtension(), and mostCenteredMaximalSegment().
|
inline |
Creates a monomial in one indeterminate.
e | the exponent for X_0 |
Ring | the type for the coefficent ring of the polynomial. |
Alloc | the type of allocator. |
Definition at line 1696 of file MPolynomial.h.
Referenced by durchblick(), DGtal::LagrangeInterpolation< TEuclideanRing >::init(), SCENARIO(), SCENARIO(), and testMPolynomial().
|
inline |
Creates a monomial in one indeterminate.
e | the exponent for X_0 |
Ring | the type for the coefficent ring of the polynomial. |
Definition at line 1768 of file MPolynomial.h.
|
inline |
Creates a monomial in two indeterminates.
e | the exponent for X_0 |
f | the exponent for X_1 |
Ring | the type for the coefficent ring of the polynomial. |
Alloc | the type of allocator. |
Definition at line 1714 of file MPolynomial.h.
|
inline |
Creates a monomial in two indeterminates.
e | the exponent for X_0 |
f | the exponent for X_1 |
Ring | the type for the coefficent ring of the polynomial. |
Definition at line 1785 of file MPolynomial.h.
|
inline |
Creates a monomial in three indeterminates.
e | the exponent for X_0 |
f | the exponent for X_1 |
g | the exponent for X_2 |
Ring | the type for the coefficent ring of the polynomial. |
Alloc | the type of allocator. |
Definition at line 1732 of file MPolynomial.h.
|
inline |
Creates a monomial in three indeterminates.
e | the exponent for X_0 |
f | the exponent for X_1 |
g | the exponent for X_2 |
Ring | the type for the coefficent ring of the polynomial. |
Definition at line 1803 of file MPolynomial.h.
|
inline |
Creates a monomial in four indeterminates.
e | the exponent for X_0 |
f | the exponent for X_1 |
g | the exponent for X_2 |
h | the exponent for X_3 |
Ring | the type for the coefficent ring of the polynomial. |
Alloc | the type of allocator. |
Definition at line 1752 of file MPolynomial.h.
|
inline |
Creates a monomial in four indeterminates.
e | the exponent for X_0 |
f | the exponent for X_1 |
g | the exponent for X_2 |
h | the exponent for X_3 |
Ring | the type for the coefficent ring of the polynomial. |
Definition at line 1822 of file MPolynomial.h.
void DGtal::mostCenteredMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end ) |
Computes the most centered maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of segment computer |
Definition at line 660 of file SegmentComputerUtils.h.
References mostCenteredMaximalSegment().
void DGtal::mostCenteredMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
DGtal::BidirectionalSegmentComputer | ) |
Computes the most centered maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of CBidirectionalSegmentComputer |
Definition at line 587 of file SegmentComputerUtils.h.
References isNotEmpty(), maximalExtension(), maximalSymmetricExtension(), and oppositeEndMaximalExtension().
void DGtal::mostCenteredMaximalSegment | ( | SC & | s, |
const typename SC::ConstIterator & | i, | ||
const typename SC::ConstIterator & | begin, | ||
const typename SC::ConstIterator & | end, | ||
DGtal::DynamicBidirectionalSegmentComputer | ) |
Computes the most centered maximal segment passing through i
s | any instance of segment computer |
i | any ConstIterator |
begin | any begin ConstIterator bounding a range |
end | any end ConstIterator bounding a range |
SC | any model of CDynamicBidirectionalSegmentComputer |
Definition at line 642 of file SegmentComputerUtils.h.
References mostCenteredMaximalSegment().
void DGtal::mostCenteredMaximalSegment | ( | SC & | s, |