DGtal 2.1.0
Loading...
Searching...
No Matches
DGtal::ShortcutsGeometry< TKSpace > Class Template Reference

Aim: This class is used to simplify shape and surface creation. With it, you can create new shapes and surface in a few lines. The drawback is that you use specific types or objects, which could lead to faster code or more compact data structures. More...

#include <DGtal/helpers/ShortcutsGeometry.h>

Inheritance diagram for DGtal::ShortcutsGeometry< TKSpace >:
[legend]

Public Types

typedef Shortcuts< TKSpace > Base
typedef ShortcutsGeometry< TKSpace > Self
typedef TKSpace KSpace
 Digital cellular space.
typedef KSpace::Space Space
 Digital space.
typedef Space::Integer Integer
 Integer numbers.
typedef Space::Point Point
 Point with integer coordinates.
typedef Space::Vector Vector
 Vector with integer coordinates.
typedef Space::RealVector RealVector
 Vector with floating-point coordinates.
typedef Space::RealPoint RealPoint
 Point with floating-point coordinates.
typedef RealVector::Component Scalar
 Floating-point numbers.
typedef HyperRectDomain< SpaceDomain
 An (hyper-)rectangular domain.
typedef unsigned char GrayScale
 The type for 8-bits gray-scale elements.
typedef MPolynomial< Space::dimension, ScalarScalarPolynomial
 defines a multi-variate polynomial : RealPoint -> Scalar
typedef ImplicitPolynomial3Shape< SpaceImplicitShape3D
typedef GaussDigitizer< Space, ImplicitShape3DDigitizedImplicitShape3D
 defines the digitization of an implicit shape.
typedef ImageContainerBySTLVector< Domain, bool > BinaryImage
 defines a black and white image with (hyper-)rectangular domain.
typedef ImageContainerBySTLVector< Domain, GrayScaleGrayScaleImage
 defines a grey-level image with (hyper-)rectangular domain.
typedef ImageContainerBySTLVector< Domain, float > FloatImage
 defines a float image with (hyper-)rectangular domain.
typedef ImageContainerBySTLVector< Domain, double > DoubleImage
 defines a double image with (hyper-)rectangular domain.
typedef KSpace::SurfelSet SurfelSet
 defines a set of surfels
typedef LightImplicitDigitalSurface< KSpace, BinaryImageLightSurfaceContainer
typedef ::DGtal::DigitalSurface< LightSurfaceContainerLightDigitalSurface
 defines a connected digital surface over a binary image.
typedef SetOfSurfels< KSpace, SurfelSetExplicitSurfaceContainer
 defines a heavy container that represents any digital surface.
typedef ::DGtal::DigitalSurface< ExplicitSurfaceContainerDigitalSurface
 defines an arbitrary digital surface over a binary image.
typedef IndexedDigitalSurface< ExplicitSurfaceContainerIdxDigitalSurface
 defines a connected or not indexed digital surface.
typedef LightDigitalSurface::Surfel Surfel
typedef LightDigitalSurface::Cell Cell
typedef LightDigitalSurface::SCell SCell
typedef LightDigitalSurface::Vertex Vertex
typedef LightDigitalSurface::Arc Arc
typedef LightDigitalSurface::Face Face
typedef LightDigitalSurface::ArcRange ArcRange
typedef IdxDigitalSurface::Vertex IdxSurfel
typedef IdxDigitalSurface::Vertex IdxVertex
typedef IdxDigitalSurface::Arc IdxArc
typedef IdxDigitalSurface::ArcRange IdxArcRange
typedef std::set< IdxSurfelIdxSurfelSet
typedef std::vector< SurfelSurfelRange
typedef std::vector< CellCellRange
typedef std::vector< IdxSurfelIdxSurfelRange
typedef std::vector< ScalarScalars
typedef std::vector< RealVectorRealVectors
typedef std::vector< RealPointRealPoints
typedef ::DGtal::Statistic< ScalarScalarStatistic
typedef sgf::ShapePositionFunctor< ImplicitShape3DPositionFunctor
typedef sgf::ShapeNormalVectorFunctor< ImplicitShape3DNormalFunctor
typedef sgf::ShapeMeanCurvatureFunctor< ImplicitShape3DMeanCurvatureFunctor
typedef sgf::ShapeGaussianCurvatureFunctor< ImplicitShape3DGaussianCurvatureFunctor
typedef sgf::ShapeFirstPrincipalCurvatureFunctor< ImplicitShape3DFirstPrincipalCurvatureFunctor
typedef sgf::ShapeSecondPrincipalCurvatureFunctor< ImplicitShape3DSecondPrincipalCurvatureFunctor
typedef sgf::ShapeFirstPrincipalDirectionFunctor< ImplicitShape3DFirstPrincipalDirectionFunctor
typedef sgf::ShapeSecondPrincipalDirectionFunctor< ImplicitShape3DSecondPrincipalDirectionFunctor
typedef sgf::ShapePrincipalCurvaturesAndDirectionsFunctor< ImplicitShape3DPrincipalCurvaturesAndDirectionsFunctor
typedef functors::IIPrincipalCurvaturesAndDirectionsFunctor< Space >::Quantity CurvatureTensorQuantity
typedef std::vector< CurvatureTensorQuantityCurvatureTensorQuantities
typedef CorrectedNormalCurrentComputer< RealPoint, RealVectorCNCComputer
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, PositionFunctorTruePositionEstimator
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, NormalFunctorTrueNormalEstimator
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, MeanCurvatureFunctorTrueMeanCurvatureEstimator
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, GaussianCurvatureFunctorTrueGaussianCurvatureEstimator
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, FirstPrincipalCurvatureFunctorTrueFirstPrincipalCurvatureEstimator
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, SecondPrincipalCurvatureFunctorTrueSecondPrincipalCurvatureEstimator
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, FirstPrincipalDirectionFunctorTrueFirstPrincipalDirectionEstimator
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, SecondPrincipalDirectionFunctorTrueSecondPrincipalDirectionEstimator
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, PrincipalCurvaturesAndDirectionsFunctorTruePrincipalCurvaturesAndDirectionsEstimator
typedef ::DGtal::Mesh< RealPointMesh
typedef ::DGtal::TriangulatedSurface< RealPointTriangulatedSurface
typedef ::DGtal::PolygonalSurface< RealPointPolygonalSurface
typedef std::map< Surfel, IdxSurfelSurfel2Index
typedef std::map< Cell, IdxVertexCell2Index
typedef DigitalSetByAssociativeContainer< Domain, std::unordered_set< typename Domain::Point > > DigitalSet
typedef functors::NotPointPredicate< DigitalSetVoronoiPointPredicate
Public Types inherited from DGtal::Shortcuts< TKSpace >
typedef TKSpace KSpace
 Digital cellular space.
typedef KSpace::Space Space
 Digital space.
typedef Space::Integer Integer
 Integer numbers.
typedef Space::Point Point
 Point with integer coordinates.
typedef Space::Vector Vector
 Vector with integer coordinates.
typedef Space::RealVector RealVector
 Vector with floating-point coordinates.
typedef Space::RealPoint RealPoint
 Point with floating-point coordinates.
typedef RealVector::Component Scalar
 Floating-point numbers.
typedef HyperRectDomain< SpaceDomain
 An (hyper-)rectangular domain.
typedef unsigned char GrayScale
 The type for 8-bits gray-scale elements.
typedef MPolynomial< Space::dimension, ScalarScalarPolynomial
 defines a multi-variate polynomial : RealPoint -> Scalar
typedef ImplicitPolynomial3Shape< SpaceImplicitShape3D
typedef GaussDigitizer< Space, ImplicitShape3DDigitizedImplicitShape3D
 defines the digitization of an implicit shape.
typedef ImageContainerBySTLVector< Domain, bool > BinaryImage
 defines a black and white image with (hyper-)rectangular domain.
typedef ImageContainerBySTLVector< Domain, GrayScaleGrayScaleImage
 defines a grey-level image with (hyper-)rectangular domain.
typedef ImageContainerBySTLVector< Domain, float > FloatImage
 defines a float image with (hyper-)rectangular domain.
typedef ImageContainerBySTLVector< Domain, double > DoubleImage
 defines a double image with (hyper-)rectangular domain.
typedef KSpace::SurfelSet SurfelSet
 defines a set of surfels
typedef LightImplicitDigitalSurface< KSpace, BinaryImageLightSurfaceContainer
typedef ::DGtal::DigitalSurface< LightSurfaceContainerLightDigitalSurface
 defines a connected digital surface over a binary image.
typedef SetOfSurfels< KSpace, SurfelSetExplicitSurfaceContainer
 defines a heavy container that represents any digital surface.
typedef ::DGtal::DigitalSurface< ExplicitSurfaceContainerDigitalSurface
 defines an arbitrary digital surface over a binary image.
typedef IndexedDigitalSurface< ExplicitSurfaceContainerIdxDigitalSurface
 defines a connected or not indexed digital surface.
typedef LightDigitalSurface::Surfel Surfel
typedef LightDigitalSurface::Cell Cell
typedef LightDigitalSurface::SCell SCell
typedef LightDigitalSurface::Vertex Vertex
typedef LightDigitalSurface::Arc Arc
typedef LightDigitalSurface::Face Face
typedef LightDigitalSurface::ArcRange ArcRange
typedef IdxDigitalSurface::Vertex IdxSurfel
typedef IdxDigitalSurface::Vertex IdxVertex
typedef IdxDigitalSurface::Arc IdxArc
typedef IdxDigitalSurface::ArcRange IdxArcRange
typedef std::set< IdxSurfelIdxSurfelSet
typedef std::vector< SCellSCellRange
typedef std::vector< CellCellRange
typedef CellRange PointelRange
typedef SCellRange SurfelRange
typedef std::vector< IdxSurfelIdxSurfelRange
typedef std::vector< ScalarScalars
typedef std::vector< RealVectorRealVectors
typedef std::vector< RealPointRealPoints
typedef IdxVertex Idx
typedef std::vector< IdxVertexIdxRange
typedef ::DGtal::Mesh< RealPointMesh
typedef ::DGtal::TriangulatedSurface< RealPointTriangulatedSurface
typedef ::DGtal::PolygonalSurface< RealPointPolygonalSurface
typedef ::DGtal::SurfaceMesh< RealPoint, RealPointSurfaceMesh
typedef std::map< Surfel, IdxSurfelSurfel2Index
typedef std::map< Cell, IdxVertexCell2Index
typedef ::DGtal::Color Color
typedef std::vector< ColorColors
typedef GradientColorMap< ScalarColorMap
typedef TickedColorMap< Scalar, ColorMapZeroTickedColorMap

Public Member Functions

Standard services
 ShortcutsGeometry ()=delete
 ~ShortcutsGeometry ()=delete
 ShortcutsGeometry (const ShortcutsGeometry &other)=delete
 ShortcutsGeometry (ShortcutsGeometry &&other)=delete
ShortcutsGeometryoperator= (const ShortcutsGeometry &other)=delete
ShortcutsGeometryoperator= (ShortcutsGeometry &&other)=delete
Public Member Functions inherited from DGtal::Shortcuts< TKSpace >
 Shortcuts ()=delete
 ~Shortcuts ()=delete
 Shortcuts (const Shortcuts &other)=delete
 Shortcuts (Shortcuts &&other)=delete
Shortcutsoperator= (const Shortcuts &other)=delete
Shortcutsoperator= (Shortcuts &&other)=delete
void selfDisplay (std::ostream &out) const
bool isValid () const

Static Public Member Functions

static Parameters parametersKSpace ()
static KSpace getKSpace (const Point &low, const Point &up, Parameters params=parametersKSpace())
static KSpace getKSpace (CountedPtr< BinaryImage > bimage, Parameters params=parametersKSpace())
static KSpace getKSpace (CountedPtr< GrayScaleImage > gimage, Parameters params=parametersKSpace())
template<typename TDigitalSurfaceContainer>
static KSpace getKSpace (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface)
template<typename TDigitalSurfaceContainer>
static KSpace getKSpace (CountedPtr< ::DGtal::IndexedDigitalSurface< TDigitalSurfaceContainer > > surface)
static KSpace getKSpace (Parameters params=parametersKSpace()|parametersDigitizedImplicitShape3D())
static Parameters parametersDigitizedImplicitShape3D ()
Exact geometry services
static Parameters defaultParameters ()
static Parameters parametersShapeGeometry ()
static RealPoints getPositions (CountedPtr< ImplicitShape3D > shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersShapeGeometry())
static RealPoints getPositions (CountedPtr< ImplicitShape3D > shape, const RealPoints &points, const Parameters &params=parametersShapeGeometry())
static RealVectors getNormalVectors (CountedPtr< ImplicitShape3D > shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersShapeGeometry())
static Scalars getMeanCurvatures (CountedPtr< ImplicitShape3D > shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersShapeGeometry())
static Scalars getCNCMeanCurvatures (CountedPtr< typename Base::SurfaceMesh > mesh, const typename Base::SurfaceMesh::Faces faces, const Parameters &params=parametersShapeGeometry())
static Scalars getCNCMeanCurvatures (CountedPtr< typename Base::SurfaceMesh > mesh, const Parameters &params=parametersShapeGeometry())
template<typename T>
static Scalars getCNCMeanCurvatures (T &digitalObject, const Parameters &params=parametersShapeGeometry())
static Scalars getGaussianCurvatures (CountedPtr< ImplicitShape3D > shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersShapeGeometry())
static Scalars getCNCGaussianCurvatures (CountedPtr< typename Base::SurfaceMesh > mesh, const typename Base::SurfaceMesh::Faces &faces, const Parameters &params=parametersShapeGeometry())
static Scalars getCNCGaussianCurvatures (CountedPtr< typename Base::SurfaceMesh > mesh, const Parameters &params=parametersShapeGeometry())
template<typename T>
static Scalars getCNCGaussianCurvatures (T &digitalObject, const Parameters &params=parametersShapeGeometry())
static Scalars getFirstPrincipalCurvatures (CountedPtr< ImplicitShape3D > shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersShapeGeometry())
static Scalars getSecondPrincipalCurvatures (CountedPtr< ImplicitShape3D > shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersShapeGeometry())
static RealVectors getFirstPrincipalDirections (CountedPtr< ImplicitShape3D > shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersShapeGeometry())
static RealVectors getSecondPrincipalDirections (CountedPtr< ImplicitShape3D > shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersShapeGeometry())
static CurvatureTensorQuantities getPrincipalCurvaturesAndDirections (CountedPtr< ImplicitShape3D > shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersShapeGeometry())
static std::tuple< Scalars, Scalars, RealVectors, RealVectorsgetCNCPrincipalCurvaturesAndDirections (CountedPtr< typename Base::SurfaceMesh > mesh, const typename Base::SurfaceMesh::Faces &faces, const Parameters &params=parametersShapeGeometry())
static std::tuple< Scalars, Scalars, RealVectors, RealVectorsgetCNCPrincipalCurvaturesAndDirections (CountedPtr< typename Base::SurfaceMesh > mesh, const Parameters &params=parametersShapeGeometry())
template<typename T>
static std::tuple< Scalars, Scalars, RealVectors, RealVectorsgetCNCPrincipalCurvaturesAndDirections (T &digitalObject, const Parameters &params=parametersShapeGeometry())
Geometry estimation services
static Parameters parametersGeometryEstimation ()
static RealVectors getTrivialNormalVectors (const KSpace &K, const SurfelRange &surfels)
template<typename TAnyDigitalSurface>
static RealVectors getCTrivialNormalVectors (CountedPtr< TAnyDigitalSurface > surface, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation())
template<typename TAnyDigitalSurface>
static RealVectors getVCMNormalVectors (CountedPtr< TAnyDigitalSurface > surface, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation())
static RealVectors getIINormalVectors (CountedPtr< BinaryImage > bimage, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())
static RealVectors getIINormalVectors (CountedPtr< DigitizedImplicitShape3D > dshape, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace()|parametersDigitizedImplicitShape3D())
template<typename TPointPredicate>
static RealVectors getIINormalVectors (const TPointPredicate &shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())
static Scalars getIIMeanCurvatures (CountedPtr< BinaryImage > bimage, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())
static Scalars getIIMeanCurvatures (CountedPtr< DigitizedImplicitShape3D > dshape, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace()|parametersDigitizedImplicitShape3D())
template<typename TPointPredicate>
static Scalars getIIMeanCurvatures (const TPointPredicate &shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())
static Scalars getIIGaussianCurvatures (CountedPtr< BinaryImage > bimage, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())
static Scalars getIIGaussianCurvatures (CountedPtr< DigitizedImplicitShape3D > dshape, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace()|parametersDigitizedImplicitShape3D())
template<typename TPointPredicate>
static Scalars getIIGaussianCurvatures (const TPointPredicate &shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())
static CurvatureTensorQuantities getIIPrincipalCurvaturesAndDirections (CountedPtr< BinaryImage > bimage, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())
static CurvatureTensorQuantities getIIPrincipalCurvaturesAndDirections (CountedPtr< DigitizedImplicitShape3D > dshape, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace()|parametersDigitizedImplicitShape3D())
template<typename TPointPredicate>
static CurvatureTensorQuantities getIIPrincipalCurvaturesAndDirections (const TPointPredicate &shape, const KSpace &K, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())
AT approximation services
static Parameters parametersATApproximation ()
template<typename TAnyDigitalSurface, typename VectorFieldInput>
static VectorFieldInput getATVectorFieldApproximation (CountedPtr< TAnyDigitalSurface > surface, const SurfelRange &surfels, const VectorFieldInput &input, const Parameters &params=parametersATApproximation()|parametersGeometryEstimation())
template<typename TAnyDigitalSurface, typename VectorFieldInput, typename CellRangeConstIterator>
static VectorFieldInput getATVectorFieldApproximation (Scalars &features, CellRangeConstIterator itB, CellRangeConstIterator itE, CountedPtr< TAnyDigitalSurface > surface, const SurfelRange &surfels, const VectorFieldInput &input, const Parameters &params=parametersATApproximation()|parametersGeometryEstimation())
template<typename TAnyDigitalSurface>
static Scalars getATScalarFieldApproximation (CountedPtr< TAnyDigitalSurface > surface, const SurfelRange &surfels, const Scalars &input, const Parameters &params=parametersATApproximation()|parametersGeometryEstimation())
template<typename TAnyDigitalSurface, typename CellRangeConstIterator>
static Scalars getATScalarFieldApproximation (Scalars &features, CellRangeConstIterator itB, CellRangeConstIterator itE, CountedPtr< TAnyDigitalSurface > surface, const SurfelRange &surfels, const Scalars &input, const Parameters &params=parametersATApproximation()|parametersGeometryEstimation())
Error measure services
static void orientVectors (RealVectors &v, const RealVectors &ref_v)
static ScalarStatistic getStatistic (const Scalars &v)
static Scalars getVectorsAngleDeviation (const RealVectors &v1, const RealVectors &v2)
static Scalars getScalarsAbsoluteDifference (const Scalars &v1, const Scalars &v2)
static Scalar getScalarsNormL2 (const Scalars &v1, const Scalars &v2)
static Scalar getScalarsNormL1 (const Scalars &v1, const Scalars &v2)
static Scalar getScalarsNormLoo (const Scalars &v1, const Scalars &v2)
VoronoiMap services
static Parameters parametersVoronoiMap ()
template<uint32_t p, typename PointRange>
static VoronoiMap< Space, VoronoiPointPredicate, ExactPredicateLpSeparableMetric< Space, p > > getVoronoiMap (Domain domain, const PointRange &sites, const Parameters &params=parametersVoronoiMap())
 Computes the VoronoiMap on a domain, where sites are given through a range.
template<uint32_t p, typename PointRange>
static VoronoiMap< Space, VoronoiPointPredicate, ExactPredicateLpSeparableMetric< Space, p > > getVoronoiMap (CountedPtr< Domain > domain, const PointRange &sites, const Parameters &params=parametersVoronoiMap())
 Computes the VoronoiMap on a domain, where sites are given through a range.
template<uint32_t p, typename PointRange>
static DistanceTransformation< Space, VoronoiPointPredicate, ExactPredicateLpSeparableMetric< Space, p > > getDistanceTransformation (Domain domain, const PointRange &sites, const Parameters &params=parametersVoronoiMap())
 Computes the Distance Transformation on a domain, where sites are given through a range.
template<uint32_t p, typename PointRangeSites, typename PointRange>
static std::vector< VectorgetDirectionToClosestSite (const PointRange &points, const PointRangeSites &sites, const Parameters &params=parametersVoronoiMap())
 Computes the vector to the closest site from a range of points.
template<uint32_t p, typename PointRangeSites, typename PointRange>
static std::vector< typename ExactPredicateLpSeparableMetric< Space, p >::ValuegetDistanceToClosestSite (const PointRange &points, const PointRangeSites &sites, const Parameters &params=parametersVoronoiMap())
 Computes the distances to the closest site from a range of points.
template<uint32_t p, typename PointRangeSites, typename PointRange>
static std::vector< typename ExactPredicateLpSeparableMetric< Space, p >::ValuegetRawDistanceToClosestSite (const PointRange &points, const PointRangeSites &sites, const Parameters &params=parametersVoronoiMap())
 Computes the raw distances to the closest site from a range of points.
Static Public Member Functions inherited from DGtal::Shortcuts< TKSpace >
static Parameters defaultParameters ()
static std::map< std::string, std::string > getPolynomialList ()
static Parameters parametersImplicitShape3D ()
static CountedPtr< ImplicitShape3DmakeImplicitShape3D (const Parameters &params=parametersImplicitShape3D())
static Parameters parametersKSpace ()
static KSpace getKSpace (const Point &low, const Point &up, Parameters params=parametersKSpace())
static KSpace getKSpace (CountedPtr< BinaryImage > bimage, Parameters params=parametersKSpace())
static KSpace getKSpace (CountedPtr< GrayScaleImage > gimage, Parameters params=parametersKSpace())
template<typename TDigitalSurfaceContainer>
static KSpace getKSpace (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface)
template<typename TDigitalSurfaceContainer>
static KSpace getKSpace (CountedPtr< ::DGtal::IndexedDigitalSurface< TDigitalSurfaceContainer > > surface)
template<typename TDigitalSurfaceContainer>
static const KSpacerefKSpace (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface)
template<typename TDigitalSurfaceContainer>
static const KSpacerefKSpace (CountedPtr< ::DGtal::IndexedDigitalSurface< TDigitalSurfaceContainer > > surface)
static CanonicCellEmbedder< KSpacegetCellEmbedder (const KSpace &K)
static CanonicSCellEmbedder< KSpacegetSCellEmbedder (const KSpace &K)
static Parameters parametersDigitizedImplicitShape3D ()
static KSpace getKSpace (Parameters params=parametersKSpace()|parametersDigitizedImplicitShape3D())
static CountedPtr< DigitizedImplicitShape3DmakeDigitizedImplicitShape3D (CountedPtr< ImplicitShape3D > shape, Parameters params=parametersDigitizedImplicitShape3D())
static Parameters parametersBinaryImage ()
static CountedPtr< BinaryImagemakeBinaryImage (Domain shapeDomain)
static CountedPtr< BinaryImagemakeBinaryImage (CountedPtr< DigitizedImplicitShape3D > shape_digitization, Parameters params=parametersBinaryImage())
static CountedPtr< BinaryImagemakeBinaryImage (CountedPtr< DigitizedImplicitShape3D > shape_digitization, Domain shapeDomain, Parameters params=parametersBinaryImage())
static CountedPtr< BinaryImagemakeBinaryImage (CountedPtr< BinaryImage > bimage, Parameters params=parametersBinaryImage())
static CountedPtr< BinaryImagemakeBinaryImage (std::string input, Parameters params=parametersBinaryImage())
template<typename T, typename __U = std::enable_if_t<std::is_arithmetic_v<T>>>
static CountedPtr< BinaryImagemakeBinaryImage (const std::vector< T > &values, const Domain &d)
template<typename T, template< class... > class C1, template< class... > class C2, template< class... > class C3>
static CountedPtr< BinaryImagemakeBinaryImage (const C1< C2< C3< T > > > &values, std::optional< Domain > override_domain=std::nullopt)
template<typename T, std::enable_if_t<!is_double_nested_container< T >::value, int > = 0>
static CountedPtr< BinaryImagemakeBinaryImage (const std::vector< T > &positions, std::optional< Domain > override_domain=std::nullopt)
static CountedPtr< BinaryImagemakeBinaryImage (CountedPtr< GrayScaleImage > gray_scale_image, Parameters params=parametersBinaryImage())
static bool saveBinaryImage (CountedPtr< BinaryImage > bimage, std::string output)
static Parameters parametersGrayScaleImage ()
static CountedPtr< GrayScaleImagemakeGrayScaleImage (Domain aDomain)
static CountedPtr< GrayScaleImagemakeGrayScaleImage (std::string input)
static CountedPtr< GrayScaleImagemakeGrayScaleImage (CountedPtr< BinaryImage > binary_image, std::function< GrayScale(bool) > const &bool2grayscale=[](bool v) { return v ?(unsigned char) 255 :(unsigned char) 0;})
static bool saveGrayScaleImage (CountedPtr< GrayScaleImage > gray_scale_image, std::string output)
static CountedPtr< GrayScaleImagemakeGrayScaleImage (CountedPtr< FloatImage > fimage, Parameters params=parametersGrayScaleImage())
static CountedPtr< GrayScaleImagemakeGrayScaleImage (CountedPtr< DoubleImage > fimage, Parameters params=parametersGrayScaleImage())
template<typename T, typename __U = std::enable_if_t<std::is_arithmetic_v<T>>>
static CountedPtr< GrayScaleImagemakeGrayScaleImage (const std::vector< T > &values, const Domain &d)
template<typename T, template< class... > class C1, template< class... > class C2, template< class... > class C3>
static CountedPtr< GrayScaleImagemakeGrayScaleImage (const C1< C2< C3< T > > > &values, std::optional< Domain > override_domain=std::nullopt)
template<typename T, typename U, std::enable_if_t<!is_double_nested_container< T >::value, int > = 0>
static CountedPtr< GrayScaleImagemakeGrayScaleImage (const std::vector< T > &positions, const std::vector< U > &values, std::optional< Domain > override_domain=std::nullopt)
static CountedPtr< FloatImagemakeFloatImage (Domain aDomain)
static CountedPtr< FloatImagemakeFloatImage (std::string input)
static CountedPtr< FloatImagemakeFloatImage (CountedPtr< ImplicitShape3D > shape, Parameters params=parametersDigitizedImplicitShape3D())
static CountedPtr< DoubleImagemakeDoubleImage (Domain aDomain)
static CountedPtr< DoubleImagemakeDoubleImage (std::string input)
static CountedPtr< DoubleImagemakeDoubleImage (CountedPtr< ImplicitShape3D > shape, Parameters params=parametersDigitizedImplicitShape3D())
static Parameters parametersDigitalSurface ()
template<typename TDigitalSurfaceContainer>
static CanonicCellEmbedder< KSpacegetCellEmbedder (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface)
template<typename TDigitalSurfaceContainer>
static CanonicSCellEmbedder< KSpacegetSCellEmbedder (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface)
template<typename TDigitalSurfaceContainer>
static CanonicCellEmbedder< KSpacegetCellEmbedder (CountedPtr< ::DGtal::IndexedDigitalSurface< TDigitalSurfaceContainer > > surface)
template<typename TDigitalSurfaceContainer>
static CanonicSCellEmbedder< KSpacegetSCellEmbedder (CountedPtr< ::DGtal::IndexedDigitalSurface< TDigitalSurfaceContainer > > surface)
static CountedPtr< LightDigitalSurfacemakeLightDigitalSurface (CountedPtr< BinaryImage > bimage, const KSpace &K, const Parameters &params=parametersDigitalSurface())
static std::vector< CountedPtr< LightDigitalSurface > > makeLightDigitalSurfaces (CountedPtr< BinaryImage > bimage, const KSpace &K, const Parameters &params=parametersDigitalSurface())
static std::vector< CountedPtr< LightDigitalSurface > > makeLightDigitalSurfaces (SurfelRange &surfel_reps, CountedPtr< BinaryImage > bimage, const KSpace &K, const Parameters &params=parametersDigitalSurface())
template<typename TPointPredicate>
static CountedPtr< DigitalSurfacemakeDigitalSurface (CountedPtr< TPointPredicate > bimage, const KSpace &K, const Parameters &params=parametersDigitalSurface())
static CountedPtr< DigitalSurfacemakeDigitalSurface (CountedPtr< IdxDigitalSurface > idx_surface, const Parameters &params=parametersDigitalSurface())
static CountedPtr< IdxDigitalSurfacemakeIdxDigitalSurface (CountedPtr< BinaryImage > bimage, const KSpace &K, const Parameters &params=parametersDigitalSurface())
template<typename TSurfelRange>
static CountedPtr< IdxDigitalSurfacemakeIdxDigitalSurface (const TSurfelRange &surfels, ConstAlias< KSpace > K, const Parameters &params=parametersDigitalSurface())
template<typename TDigitalSurfaceContainer>
static CountedPtr< IdxDigitalSurfacemakeIdxDigitalSurface (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface, const Parameters &params=parametersDigitalSurface())
static CountedPtr< IdxDigitalSurfacemakeIdxDigitalSurface (const std::vector< CountedPtr< LightDigitalSurface > > &surfaces, const Parameters &params=parametersDigitalSurface())
template<typename TDigitalSurfaceContainer>
static CellRange getCellRange (Cell2Index &c2i, CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface, const Dimension k)
template<typename TDigitalSurfaceContainer>
static PointelRange getCellRange (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface, const Dimension k)
template<typename TDigitalSurfaceContainer>
static PointelRange getPointelRange (Cell2Index &c2i, CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface)
template<typename TDigitalSurfaceContainer>
static PointelRange getPointelRange (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface)
static PointelRange getPointelRange (const KSpace &K, const SCell &surfel)
template<typename TDigitalSurfaceContainer>
static SurfelRange getSurfelRange (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface, const Parameters &params=parametersDigitalSurface())
template<typename TDigitalSurfaceContainer>
static SurfelRange getSurfelRange (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface, const Surfel &start_surfel, const Parameters &params=parametersDigitalSurface())
static IdxSurfelRange getIdxSurfelRange (CountedPtr< IdxDigitalSurface > surface, const Parameters &params=parametersDigitalSurface())
static IdxSurfelRange getIdxSurfelRange (CountedPtr< IdxDigitalSurface > surface, const IdxSurfel &start_surfel, const Parameters &params=parametersDigitalSurface())
template<typename TDigitalSurfaceContainer, typename TCellEmbedder>
static bool saveOFF (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > digsurf, const TCellEmbedder &embedder, std::string off_file, const Color &face_color=DGtal::Color::None)
template<typename TDigitalSurfaceContainer, typename TCellEmbedder>
static bool saveOBJ (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > digsurf, const TCellEmbedder &embedder, const RealVectors &normals, const Colors &diffuse_colors, std::string objfile, const Color &ambient_color=Color(32, 32, 32), const Color &diffuse_color=Color(200, 200, 255), const Color &specular_color=Color::White)
template<typename TDigitalSurfaceContainer>
static bool saveOBJ (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > digsurf, const RealVectors &normals, const Colors &diffuse_colors, std::string objfile, const Color &ambient_color=Color(32, 32, 32), const Color &diffuse_color=Color(200, 200, 255), const Color &specular_color=Color::White)
template<typename TDigitalSurfaceContainer>
static bool saveOFF (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > digsurf, std::string off_file, const Color &face_color=Color(32, 32, 32))
template<typename TDigitalSurfaceContainer>
static bool saveOBJ (CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > digsurf, std::string objfile, const Color &ambient_color=Color(32, 32, 32), const Color &diffuse_color=Color(200, 200, 255), const Color &specular_color=Color::White)
static bool saveVectorFieldOBJ (const RealPoints &positions, const RealVectors &vf, double thickness, const Colors &diffuse_colors, std::string objfile, const Color &ambient_color=Color(32, 32, 32), const Color &diffuse_color=Color(200, 200, 255), const Color &specular_color=Color::White)
static Parameters parametersMesh ()
static CountedPtr< TriangulatedSurfacemakeTriangulatedSurface (CountedPtr< Mesh > aMesh)
static CountedPtr< MeshmakeMesh (CountedPtr< TriangulatedSurface > triSurf, const Color &aColor=Color::White)
static CountedPtr< MeshmakeMesh (CountedPtr< PolygonalSurface > polySurf, const Color &aColor=Color::White)
template<typename TContainer>
static CountedPtr< TriangulatedSurfacemakeTriangulatedSurface (Surfel2Index &s2i, CountedPtr< ::DGtal::DigitalSurface< TContainer > > aSurface)
template<typename TContainer>
static CountedPtr< TriangulatedSurfacemakeTriangulatedSurface (CountedPtr< ::DGtal::DigitalSurface< TContainer > > aSurface)
static CountedPtr< TriangulatedSurfacemakeTriangulatedSurface (CountedPtr< PolygonalSurface > polySurf, const Parameters &params=parametersMesh())
static CountedPtr< PolygonalSurfacemakePolygonalSurface (CountedPtr< Mesh > aMesh)
static CountedPtr< PolygonalSurfacemakePolygonalSurface (CountedPtr< GrayScaleImage > gray_scale_image, const Parameters &params=parametersKSpace()|parametersBinaryImage()|parametersDigitalSurface())
static CountedPtr< TriangulatedSurfacemakeTriangulatedSurface (CountedPtr< GrayScaleImage > gray_scale_image, const Parameters &params=parametersKSpace()|parametersBinaryImage()|parametersDigitalSurface())
template<typename TContainer>
static CountedPtr< PolygonalSurfacemakeDualPolygonalSurface (Surfel2Index &s2i, CountedPtr< ::DGtal::DigitalSurface< TContainer > > aSurface)
template<typename TContainer>
static CountedPtr< PolygonalSurfacemakeDualPolygonalSurface (CountedPtr< ::DGtal::DigitalSurface< TContainer > > aSurface)
template<typename TContainer>
static CountedPtr< PolygonalSurfacemakeDualPolygonalSurface (CountedPtr< ::DGtal::IndexedDigitalSurface< TContainer > > aSurface)
template<typename TContainer>
static CountedPtr< PolygonalSurfacemakePrimalPolygonalSurface (Cell2Index &c2i, CountedPtr< ::DGtal::DigitalSurface< TContainer > > aSurface)
template<typename TContainer>
static CountedPtr< PolygonalSurfacemakePrimalPolygonalSurface (CountedPtr< ::DGtal::DigitalSurface< TContainer > > aSurface)
template<typename TContainer>
static CountedPtr< PolygonalSurfacemakePrimalPolygonalSurface (CountedPtr< ::DGtal::IndexedDigitalSurface< TContainer > > aSurface)
template<typename TContainer>
static CountedPtr< SurfaceMeshmakePrimalSurfaceMesh (Cell2Index &c2i, CountedPtr< ::DGtal::DigitalSurface< TContainer > > aSurface)
template<typename TContainer>
static CountedPtr< SurfaceMeshmakePrimalSurfaceMesh (CountedPtr< ::DGtal::DigitalSurface< TContainer > > aSurface)
template<typename TContainer>
static CountedPtr< SurfaceMeshmakePrimalSurfaceMesh (CountedPtr< ::DGtal::IndexedDigitalSurface< TContainer > > aSurface)
static CountedPtr< SurfaceMeshmakeSurfaceMesh (const std::string &path)
template<typename TPoint, typename TVector>
static bool saveOBJ (CountedPtr< ::DGtal::SurfaceMesh< TPoint, TVector > > surf, const std::string &objfile)
template<typename TPoint>
static bool saveOBJ (CountedPtr< ::DGtal::PolygonalSurface< TPoint > > polysurf, const std::string &objfile)
template<typename TPoint>
static bool saveOFF (CountedPtr< ::DGtal::PolygonalSurface< TPoint > > polysurf, std::string off_file, const Color &face_color=DGtal::Color::None)
template<typename TPoint>
static bool saveOBJ (CountedPtr< ::DGtal::TriangulatedSurface< TPoint > > trisurf, const std::string &objfile)
template<typename TPoint>
static bool saveOBJ (CountedPtr< ::DGtal::PolygonalSurface< TPoint > > polysurf, const RealVectors &normals, const Colors &diffuse_colors, std::string objfile, const Color &ambient_color=Color(32, 32, 32), const Color &diffuse_color=Color(200, 200, 255), const Color &specular_color=Color::White)
template<typename TPoint>
static bool saveOBJ (CountedPtr< ::DGtal::TriangulatedSurface< TPoint > > trisurf, const RealVectors &normals, const Colors &diffuse_colors, std::string objfile, const Color &ambient_color=Color(32, 32, 32), const Color &diffuse_color=Color(200, 200, 255), const Color &specular_color=Color::White)
template<typename TPoint, typename TVector>
static bool saveOBJ (CountedPtr< ::DGtal::SurfaceMesh< TPoint, TVector > > surf, const RealVectors &normals, const Colors &diffuse_colors, std::string objfile, const Color &ambient_color=Color(32, 32, 32), const Color &diffuse_color=Color(200, 200, 255), const Color &specular_color=Color::White)
template<typename TPoint>
static bool saveOFF (CountedPtr< ::DGtal::TriangulatedSurface< TPoint > > trisurf, std::string off_file, const Color &face_color=DGtal::Color::None)
static Parameters parametersUtilities ()
template<typename TValue>
static IdxRange getRangeMatch (const std::vector< TValue > &s1, const std::vector< TValue > &s2, bool perfect=false)
template<typename TValue>
static std::vector< TValue > getMatchedRange (const std::vector< TValue > &range, const IdxRange &match)
static ColorMap getColorMap (Scalar min, Scalar max, const Parameters &params=parametersUtilities())
static ZeroTickedColorMap getZeroTickedColorMap (Scalar min, Scalar max, const Parameters &params=parametersUtilities())
template<typename TCellEmbedder = CanonicCellEmbedder< KSpace >>
static bool outputSurfelsAsObj (std::ostream &output, const SurfelRange &surfels, const TCellEmbedder &embedder)
template<typename TAnyDigitalSurface>
static bool outputPrimalDigitalSurfaceAsObj (std::ostream &output, CountedPtr< TAnyDigitalSurface > surface)
template<typename TAnyDigitalSurface, typename TCellEmbedder = CanonicCellEmbedder< KSpace >>
static bool outputPrimalDigitalSurfaceAsObj (std::ostream &output, CountedPtr< TAnyDigitalSurface > surface, const TCellEmbedder &embedder)
static bool outputPrimalIdxDigitalSurfaceAsObj (std::ostream &output, CountedPtr< IdxDigitalSurface > surface)
template<typename TCellEmbedder = CanonicCellEmbedder< KSpace >>
static bool outputPrimalIdxDigitalSurfaceAsObj (std::ostream &output, CountedPtr< IdxDigitalSurface > surface, const TCellEmbedder &embedder)
template<typename TDigitalSurfaceContainer>
static bool outputDualDigitalSurfaceAsObj (std::ostream &output, CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface, const Parameters &params=parametersMesh())
template<typename TDigitalSurfaceContainer, typename TCellEmbedder = CanonicCellEmbedder< KSpace >>
static bool outputDualDigitalSurfaceAsObj (std::ostream &output, CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface, const TCellEmbedder &embedder, const Parameters &params=parametersMesh())
template<typename TSCellMap, typename TValueWriter>
static bool outputSCellMapAsCSV (std::ostream &output, const KSpace &K, const TSCellMap &anyMap, const TValueWriter &writer)
template<typename TCellMap, typename TValueWriter>
static bool outputCellMapAsCSV (std::ostream &output, const KSpace &K, const TCellMap &anyMap, const TValueWriter &writer)
static CellRange getPrimalCells (const KSpace &K, const SCell &s, const Dimension k)
static CellRange getPrimalVertices (const KSpace &K, const SCell &s)
static CellRange getPrimalVertices (const KSpace &K, const Surfel &s, bool ccw)

Private Member Functions

 BOOST_CONCEPT_ASSERT ((concepts::CCellularGridSpaceND< TKSpace >))

Detailed Description

template<typename TKSpace>
class DGtal::ShortcutsGeometry< TKSpace >

Aim: This class is used to simplify shape and surface creation. With it, you can create new shapes and surface in a few lines. The drawback is that you use specific types or objects, which could lead to faster code or more compact data structures.

Description of template class 'ShortcutsGeometry'

Template Parameters
TKSpaceany cellular grid space, a model of concepts::CCellularGridSpaceND like KhalimskySpaceND.

Definition at line 78 of file ShortcutsGeometry.h.

Member Typedef Documentation

◆ Arc

template<typename TKSpace>
typedef LightDigitalSurface::Arc DGtal::ShortcutsGeometry< TKSpace >::Arc

Definition at line 146 of file ShortcutsGeometry.h.

◆ ArcRange

template<typename TKSpace>
typedef LightDigitalSurface::ArcRange DGtal::ShortcutsGeometry< TKSpace >::ArcRange

Definition at line 148 of file ShortcutsGeometry.h.

◆ Base

template<typename TKSpace>
typedef Shortcuts< TKSpace > DGtal::ShortcutsGeometry< TKSpace >::Base

Definition at line 82 of file ShortcutsGeometry.h.

◆ BinaryImage

template<typename TKSpace>
typedef ImageContainerBySTLVector<Domain, bool> DGtal::ShortcutsGeometry< TKSpace >::BinaryImage

defines a black and white image with (hyper-)rectangular domain.

Definition at line 122 of file ShortcutsGeometry.h.

◆ Cell

template<typename TKSpace>
typedef LightDigitalSurface::Cell DGtal::ShortcutsGeometry< TKSpace >::Cell

Definition at line 143 of file ShortcutsGeometry.h.

◆ Cell2Index

template<typename TKSpace>
typedef std::map<Cell, IdxVertex> DGtal::ShortcutsGeometry< TKSpace >::Cell2Index

Definition at line 201 of file ShortcutsGeometry.h.

◆ CellRange

template<typename TKSpace>
typedef std::vector< Cell > DGtal::ShortcutsGeometry< TKSpace >::CellRange

Definition at line 155 of file ShortcutsGeometry.h.

◆ CNCComputer

template<typename TKSpace>
typedef CorrectedNormalCurrentComputer<RealPoint, RealVector> DGtal::ShortcutsGeometry< TKSpace >::CNCComputer

Definition at line 176 of file ShortcutsGeometry.h.

◆ CurvatureTensorQuantities

template<typename TKSpace>
typedef std::vector< CurvatureTensorQuantity > DGtal::ShortcutsGeometry< TKSpace >::CurvatureTensorQuantities

Definition at line 174 of file ShortcutsGeometry.h.

◆ CurvatureTensorQuantity

template<typename TKSpace>
typedef functors::IIPrincipalCurvaturesAndDirectionsFunctor<Space>::Quantity DGtal::ShortcutsGeometry< TKSpace >::CurvatureTensorQuantity

Definition at line 173 of file ShortcutsGeometry.h.

◆ DigitalSet

template<typename TKSpace>
typedef DigitalSetByAssociativeContainer<Domain, std::unordered_set<typename Domain::Point> > DGtal::ShortcutsGeometry< TKSpace >::DigitalSet

Definition at line 203 of file ShortcutsGeometry.h.

◆ DigitalSurface

template<typename TKSpace>
typedef ::DGtal::DigitalSurface< ExplicitSurfaceContainer > DGtal::ShortcutsGeometry< TKSpace >::DigitalSurface

defines an arbitrary digital surface over a binary image.

Definition at line 139 of file ShortcutsGeometry.h.

◆ DigitizedImplicitShape3D

template<typename TKSpace>
typedef GaussDigitizer< Space, ImplicitShape3D > DGtal::ShortcutsGeometry< TKSpace >::DigitizedImplicitShape3D

defines the digitization of an implicit shape.

Definition at line 120 of file ShortcutsGeometry.h.

◆ Domain

template<typename TKSpace>
typedef HyperRectDomain<Space> DGtal::ShortcutsGeometry< TKSpace >::Domain

An (hyper-)rectangular domain.

Definition at line 108 of file ShortcutsGeometry.h.

◆ DoubleImage

template<typename TKSpace>
typedef ImageContainerBySTLVector<Domain, double> DGtal::ShortcutsGeometry< TKSpace >::DoubleImage

defines a double image with (hyper-)rectangular domain.

Definition at line 128 of file ShortcutsGeometry.h.

◆ ExplicitSurfaceContainer

template<typename TKSpace>
typedef SetOfSurfels< KSpace, SurfelSet > DGtal::ShortcutsGeometry< TKSpace >::ExplicitSurfaceContainer

defines a heavy container that represents any digital surface.

Definition at line 137 of file ShortcutsGeometry.h.

◆ Face

template<typename TKSpace>
typedef LightDigitalSurface::Face DGtal::ShortcutsGeometry< TKSpace >::Face

Definition at line 147 of file ShortcutsGeometry.h.

◆ FirstPrincipalCurvatureFunctor

template<typename TKSpace>
typedef sgf::ShapeFirstPrincipalCurvatureFunctor<ImplicitShape3D> DGtal::ShortcutsGeometry< TKSpace >::FirstPrincipalCurvatureFunctor

Definition at line 167 of file ShortcutsGeometry.h.

◆ FirstPrincipalDirectionFunctor

template<typename TKSpace>
typedef sgf::ShapeFirstPrincipalDirectionFunctor<ImplicitShape3D> DGtal::ShortcutsGeometry< TKSpace >::FirstPrincipalDirectionFunctor

Definition at line 169 of file ShortcutsGeometry.h.

◆ FloatImage

template<typename TKSpace>
typedef ImageContainerBySTLVector<Domain, float> DGtal::ShortcutsGeometry< TKSpace >::FloatImage

defines a float image with (hyper-)rectangular domain.

Definition at line 126 of file ShortcutsGeometry.h.

◆ GaussianCurvatureFunctor

template<typename TKSpace>
typedef sgf::ShapeGaussianCurvatureFunctor<ImplicitShape3D> DGtal::ShortcutsGeometry< TKSpace >::GaussianCurvatureFunctor

Definition at line 166 of file ShortcutsGeometry.h.

◆ GrayScale

template<typename TKSpace>
typedef unsigned char DGtal::ShortcutsGeometry< TKSpace >::GrayScale

The type for 8-bits gray-scale elements.

Definition at line 110 of file ShortcutsGeometry.h.

◆ GrayScaleImage

template<typename TKSpace>
typedef ImageContainerBySTLVector<Domain, GrayScale> DGtal::ShortcutsGeometry< TKSpace >::GrayScaleImage

defines a grey-level image with (hyper-)rectangular domain.

Definition at line 124 of file ShortcutsGeometry.h.

◆ IdxArc

template<typename TKSpace>
typedef IdxDigitalSurface::Arc DGtal::ShortcutsGeometry< TKSpace >::IdxArc

Definition at line 151 of file ShortcutsGeometry.h.

◆ IdxArcRange

template<typename TKSpace>
typedef IdxDigitalSurface::ArcRange DGtal::ShortcutsGeometry< TKSpace >::IdxArcRange

Definition at line 152 of file ShortcutsGeometry.h.

◆ IdxDigitalSurface

template<typename TKSpace>
typedef IndexedDigitalSurface< ExplicitSurfaceContainer > DGtal::ShortcutsGeometry< TKSpace >::IdxDigitalSurface

defines a connected or not indexed digital surface.

Definition at line 141 of file ShortcutsGeometry.h.

◆ IdxSurfel

template<typename TKSpace>
typedef IdxDigitalSurface::Vertex DGtal::ShortcutsGeometry< TKSpace >::IdxSurfel

Definition at line 149 of file ShortcutsGeometry.h.

◆ IdxSurfelRange

template<typename TKSpace>
typedef std::vector< IdxSurfel > DGtal::ShortcutsGeometry< TKSpace >::IdxSurfelRange

Definition at line 156 of file ShortcutsGeometry.h.

◆ IdxSurfelSet

template<typename TKSpace>
typedef std::set< IdxSurfel > DGtal::ShortcutsGeometry< TKSpace >::IdxSurfelSet

Definition at line 153 of file ShortcutsGeometry.h.

◆ IdxVertex

template<typename TKSpace>
typedef IdxDigitalSurface::Vertex DGtal::ShortcutsGeometry< TKSpace >::IdxVertex

Definition at line 150 of file ShortcutsGeometry.h.

◆ ImplicitShape3D

template<typename TKSpace>
typedef ImplicitPolynomial3Shape<Space> DGtal::ShortcutsGeometry< TKSpace >::ImplicitShape3D

defines an implicit shape of the space, which is the zero-level set of a ScalarPolynomial.

Definition at line 118 of file ShortcutsGeometry.h.

◆ Integer

template<typename TKSpace>
typedef Space::Integer DGtal::ShortcutsGeometry< TKSpace >::Integer

Integer numbers.

Definition at line 96 of file ShortcutsGeometry.h.

◆ KSpace

template<typename TKSpace>
typedef TKSpace DGtal::ShortcutsGeometry< TKSpace >::KSpace

Digital cellular space.

Definition at line 92 of file ShortcutsGeometry.h.

◆ LightDigitalSurface

template<typename TKSpace>
typedef ::DGtal::DigitalSurface< LightSurfaceContainer > DGtal::ShortcutsGeometry< TKSpace >::LightDigitalSurface

defines a connected digital surface over a binary image.

Definition at line 135 of file ShortcutsGeometry.h.

◆ LightSurfaceContainer

template<typename TKSpace>
typedef LightImplicitDigitalSurface< KSpace, BinaryImage > DGtal::ShortcutsGeometry< TKSpace >::LightSurfaceContainer

defines a light container that represents a connected digital surface over a binary image.

Definition at line 133 of file ShortcutsGeometry.h.

◆ MeanCurvatureFunctor

template<typename TKSpace>
typedef sgf::ShapeMeanCurvatureFunctor<ImplicitShape3D> DGtal::ShortcutsGeometry< TKSpace >::MeanCurvatureFunctor

Definition at line 165 of file ShortcutsGeometry.h.

◆ Mesh

template<typename TKSpace>
typedef ::DGtal::Mesh<RealPoint> DGtal::ShortcutsGeometry< TKSpace >::Mesh

Definition at line 197 of file ShortcutsGeometry.h.

◆ NormalFunctor

template<typename TKSpace>
typedef sgf::ShapeNormalVectorFunctor<ImplicitShape3D> DGtal::ShortcutsGeometry< TKSpace >::NormalFunctor

Definition at line 164 of file ShortcutsGeometry.h.

◆ Point

template<typename TKSpace>
typedef Space::Point DGtal::ShortcutsGeometry< TKSpace >::Point

Point with integer coordinates.

Definition at line 98 of file ShortcutsGeometry.h.

◆ PolygonalSurface

template<typename TKSpace>
typedef ::DGtal::PolygonalSurface<RealPoint> DGtal::ShortcutsGeometry< TKSpace >::PolygonalSurface

Definition at line 199 of file ShortcutsGeometry.h.

◆ PositionFunctor

template<typename TKSpace>
typedef sgf::ShapePositionFunctor<ImplicitShape3D> DGtal::ShortcutsGeometry< TKSpace >::PositionFunctor

Definition at line 163 of file ShortcutsGeometry.h.

◆ PrincipalCurvaturesAndDirectionsFunctor

template<typename TKSpace>
typedef sgf::ShapePrincipalCurvaturesAndDirectionsFunctor<ImplicitShape3D> DGtal::ShortcutsGeometry< TKSpace >::PrincipalCurvaturesAndDirectionsFunctor

Definition at line 171 of file ShortcutsGeometry.h.

◆ RealPoint

template<typename TKSpace>
typedef Space::RealPoint DGtal::ShortcutsGeometry< TKSpace >::RealPoint

Point with floating-point coordinates.

Definition at line 104 of file ShortcutsGeometry.h.

◆ RealPoints

template<typename TKSpace>
typedef std::vector< RealPoint > DGtal::ShortcutsGeometry< TKSpace >::RealPoints

Definition at line 159 of file ShortcutsGeometry.h.

◆ RealVector

template<typename TKSpace>
typedef Space::RealVector DGtal::ShortcutsGeometry< TKSpace >::RealVector

Vector with floating-point coordinates.

Definition at line 102 of file ShortcutsGeometry.h.

◆ RealVectors

template<typename TKSpace>
typedef std::vector< RealVector > DGtal::ShortcutsGeometry< TKSpace >::RealVectors

Definition at line 158 of file ShortcutsGeometry.h.

◆ Scalar

template<typename TKSpace>
typedef RealVector::Component DGtal::ShortcutsGeometry< TKSpace >::Scalar

Floating-point numbers.

Definition at line 106 of file ShortcutsGeometry.h.

◆ ScalarPolynomial

template<typename TKSpace>
typedef MPolynomial< Space::dimension, Scalar > DGtal::ShortcutsGeometry< TKSpace >::ScalarPolynomial

defines a multi-variate polynomial : RealPoint -> Scalar

Definition at line 115 of file ShortcutsGeometry.h.

◆ Scalars

template<typename TKSpace>
typedef std::vector< Scalar > DGtal::ShortcutsGeometry< TKSpace >::Scalars

Definition at line 157 of file ShortcutsGeometry.h.

◆ ScalarStatistic

template<typename TKSpace>
typedef ::DGtal::Statistic<Scalar> DGtal::ShortcutsGeometry< TKSpace >::ScalarStatistic

Definition at line 161 of file ShortcutsGeometry.h.

◆ SCell

template<typename TKSpace>
typedef LightDigitalSurface::SCell DGtal::ShortcutsGeometry< TKSpace >::SCell

Definition at line 144 of file ShortcutsGeometry.h.

◆ SecondPrincipalCurvatureFunctor

template<typename TKSpace>
typedef sgf::ShapeSecondPrincipalCurvatureFunctor<ImplicitShape3D> DGtal::ShortcutsGeometry< TKSpace >::SecondPrincipalCurvatureFunctor

Definition at line 168 of file ShortcutsGeometry.h.

◆ SecondPrincipalDirectionFunctor

template<typename TKSpace>
typedef sgf::ShapeSecondPrincipalDirectionFunctor<ImplicitShape3D> DGtal::ShortcutsGeometry< TKSpace >::SecondPrincipalDirectionFunctor

Definition at line 170 of file ShortcutsGeometry.h.

◆ Self

template<typename TKSpace>
typedef ShortcutsGeometry< TKSpace > DGtal::ShortcutsGeometry< TKSpace >::Self

Definition at line 83 of file ShortcutsGeometry.h.

◆ Space

template<typename TKSpace>
typedef KSpace::Space DGtal::ShortcutsGeometry< TKSpace >::Space

Digital space.

Definition at line 94 of file ShortcutsGeometry.h.

◆ Surfel

template<typename TKSpace>
typedef LightDigitalSurface::Surfel DGtal::ShortcutsGeometry< TKSpace >::Surfel

Definition at line 142 of file ShortcutsGeometry.h.

◆ Surfel2Index

template<typename TKSpace>
typedef std::map<Surfel, IdxSurfel> DGtal::ShortcutsGeometry< TKSpace >::Surfel2Index

Definition at line 200 of file ShortcutsGeometry.h.

◆ SurfelRange

template<typename TKSpace>
typedef std::vector< Surfel > DGtal::ShortcutsGeometry< TKSpace >::SurfelRange

Definition at line 154 of file ShortcutsGeometry.h.

◆ SurfelSet

template<typename TKSpace>
typedef KSpace::SurfelSet DGtal::ShortcutsGeometry< TKSpace >::SurfelSet

defines a set of surfels

Definition at line 130 of file ShortcutsGeometry.h.

◆ TriangulatedSurface

template<typename TKSpace>
typedef ::DGtal::TriangulatedSurface<RealPoint> DGtal::ShortcutsGeometry< TKSpace >::TriangulatedSurface

Definition at line 198 of file ShortcutsGeometry.h.

◆ TrueFirstPrincipalCurvatureEstimator

template<typename TKSpace>
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, FirstPrincipalCurvatureFunctor > DGtal::ShortcutsGeometry< TKSpace >::TrueFirstPrincipalCurvatureEstimator

Definition at line 187 of file ShortcutsGeometry.h.

◆ TrueFirstPrincipalDirectionEstimator

template<typename TKSpace>
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, FirstPrincipalDirectionFunctor > DGtal::ShortcutsGeometry< TKSpace >::TrueFirstPrincipalDirectionEstimator

Definition at line 191 of file ShortcutsGeometry.h.

◆ TrueGaussianCurvatureEstimator

template<typename TKSpace>
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, GaussianCurvatureFunctor > DGtal::ShortcutsGeometry< TKSpace >::TrueGaussianCurvatureEstimator

Definition at line 185 of file ShortcutsGeometry.h.

◆ TrueMeanCurvatureEstimator

template<typename TKSpace>
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, MeanCurvatureFunctor > DGtal::ShortcutsGeometry< TKSpace >::TrueMeanCurvatureEstimator

Definition at line 183 of file ShortcutsGeometry.h.

◆ TrueNormalEstimator

template<typename TKSpace>
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, NormalFunctor > DGtal::ShortcutsGeometry< TKSpace >::TrueNormalEstimator

Definition at line 181 of file ShortcutsGeometry.h.

◆ TruePositionEstimator

template<typename TKSpace>
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, PositionFunctor > DGtal::ShortcutsGeometry< TKSpace >::TruePositionEstimator

Definition at line 179 of file ShortcutsGeometry.h.

◆ TruePrincipalCurvaturesAndDirectionsEstimator

template<typename TKSpace>
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, PrincipalCurvaturesAndDirectionsFunctor > DGtal::ShortcutsGeometry< TKSpace >::TruePrincipalCurvaturesAndDirectionsEstimator

Definition at line 195 of file ShortcutsGeometry.h.

◆ TrueSecondPrincipalCurvatureEstimator

template<typename TKSpace>
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, SecondPrincipalCurvatureFunctor > DGtal::ShortcutsGeometry< TKSpace >::TrueSecondPrincipalCurvatureEstimator

Definition at line 189 of file ShortcutsGeometry.h.

◆ TrueSecondPrincipalDirectionEstimator

template<typename TKSpace>
typedef TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, SecondPrincipalDirectionFunctor > DGtal::ShortcutsGeometry< TKSpace >::TrueSecondPrincipalDirectionEstimator

Definition at line 193 of file ShortcutsGeometry.h.

◆ Vector

template<typename TKSpace>
typedef Space::Vector DGtal::ShortcutsGeometry< TKSpace >::Vector

Vector with integer coordinates.

Definition at line 100 of file ShortcutsGeometry.h.

◆ Vertex

template<typename TKSpace>
typedef LightDigitalSurface::Vertex DGtal::ShortcutsGeometry< TKSpace >::Vertex

Definition at line 145 of file ShortcutsGeometry.h.

◆ VoronoiPointPredicate

template<typename TKSpace>
typedef functors::NotPointPredicate<DigitalSet> DGtal::ShortcutsGeometry< TKSpace >::VoronoiPointPredicate

Definition at line 204 of file ShortcutsGeometry.h.

Constructor & Destructor Documentation

◆ ShortcutsGeometry() [1/3]

template<typename TKSpace>
DGtal::ShortcutsGeometry< TKSpace >::ShortcutsGeometry ( )
delete

Default constructor.

◆ ~ShortcutsGeometry()

template<typename TKSpace>
DGtal::ShortcutsGeometry< TKSpace >::~ShortcutsGeometry ( )
delete

Destructor.

◆ ShortcutsGeometry() [2/3]

template<typename TKSpace>
DGtal::ShortcutsGeometry< TKSpace >::ShortcutsGeometry ( const ShortcutsGeometry< TKSpace > & other)
delete

Copy constructor.

Parameters
otherthe object to clone.

◆ ShortcutsGeometry() [3/3]

template<typename TKSpace>
DGtal::ShortcutsGeometry< TKSpace >::ShortcutsGeometry ( ShortcutsGeometry< TKSpace > && other)
delete

Move constructor.

Parameters
otherthe object to move.

Member Function Documentation

◆ BOOST_CONCEPT_ASSERT()

template<typename TKSpace>
DGtal::ShortcutsGeometry< TKSpace >::BOOST_CONCEPT_ASSERT ( (concepts::CCellularGridSpaceND< TKSpace >) )
private

◆ defaultParameters()

template<typename TKSpace>
Parameters DGtal::ShortcutsGeometry< TKSpace >::defaultParameters ( )
inlinestatic
Returns
the parameters used in ShortcutsGeometry.

Definition at line 215 of file ShortcutsGeometry.h.

216 {
221 }
static Parameters parametersGeometryEstimation()
static Parameters parametersShapeGeometry()
static Parameters parametersATApproximation()
static Parameters parametersVoronoiMap()

◆ getATScalarFieldApproximation() [1/2]

template<typename TKSpace>
template<typename TAnyDigitalSurface>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getATScalarFieldApproximation ( CountedPtr< TAnyDigitalSurface > surface,
const SurfelRange & surfels,
const Scalars & input,
const Parameters & params = parametersATApproximation() | parametersGeometryEstimation() )
inlinestatic

Given any digital surface, a surfel range surfels, and an input scalar field input, returns a piece-smooth approximation of input using Ambrosio-Tortorelli functional.

See also
Piecewise-smooth approximation using a discrete calculus model of Ambrosio-Tortorelli functional
Template Parameters
TAnyDigitalSurfaceeither kind of DigitalSurface, like ShortcutsGeometry::LightDigitalSurface or ShortcutsGeometry::DigitalSurface.
Parameters
[in]surfacethe digital surface
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • at-alpha [ 0.1 ]: parameter alpha in AT (data fit)
  • at-lambda [ 0.025 ]: parameter lambda in AT (1/length of discontinuities)
  • at-epsilon [ 0.5 ]: (last value of) parameter epsilon in AT (width of discontinuities)
  • at-epsilon-start[ 2.0 ]: first value for parameter epsilon in Gamma-convergence optimization (sequence of AT optimization with decreasing epsilon)
  • at-epsilon-ratio[ 2.0 ]: ratio between two consecutive epsilon value in Gamma-convergence optimization (sequence of AT optimization with decreasing epsilon)
  • at-max-iter [ 10 ]: maximum number of alternate minization in AT optimization
  • at-diff-v-max [ 0.0001]: stopping criterion that measures the loo-norm of the evolution of v between two iterations
[in]inputthe input scalar field (a vector of scalar values)
Returns
the piecewise-smooth approximation of input.

Definition at line 1854 of file ShortcutsGeometry.h.

1859 {
1860 (void)surface; //param not used FIXME: JOL
1861
1862 int verbose = params[ "verbose" ].as<int>();
1863 Scalar alpha_at = params[ "at-alpha" ].as<Scalar>();
1864 Scalar lambda_at = params[ "at-lambda" ].as<Scalar>();
1865 Scalar epsilon1 = params[ "at-epsilon-start" ].as<Scalar>();
1866 Scalar epsilon2 = params[ "at-epsilon" ].as<Scalar>();
1867 Scalar epsilonr = params[ "at-epsilon-ratio" ].as<Scalar>();
1868 int max_iter = params[ "at-max-iter" ].as<int>();
1869 Scalar diff_v_max= params[ "at-diff-v-max" ].as<Scalar>();
1871 const auto calculus = CalculusFactory::createFromNSCells<2>( surfels.cbegin(), surfels.cend() );
1873 at_solver.initInputScalarFieldU2( input, surfels.cbegin(), surfels.cend() );
1874 at_solver.setUp( alpha_at, lambda_at );
1875 at_solver.solveGammaConvergence( epsilon1, epsilon2, epsilonr, false, diff_v_max, max_iter );
1876 auto output = input;
1877 at_solver.getOutputScalarFieldU2( output, surfels.cbegin(), surfels.cend() );
1878 return output;
1879 }
Aim: This class is used to simplify shape and surface creation. With it, you can create new shapes an...
RealVector::Component Scalar
Floating-point numbers.

◆ getATScalarFieldApproximation() [2/2]

template<typename TKSpace>
template<typename TAnyDigitalSurface, typename CellRangeConstIterator>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getATScalarFieldApproximation ( Scalars & features,
CellRangeConstIterator itB,
CellRangeConstIterator itE,
CountedPtr< TAnyDigitalSurface > surface,
const SurfelRange & surfels,
const Scalars & input,
const Parameters & params = parametersATApproximation() | parametersGeometryEstimation() )
inlinestatic

Given any digital surface, a surfel range surfels, and an input scalar field input, returns a piece-smooth approximation of input using Ambrosio-Tortorelli functional. Given a range of pointels, linels or 2-cells [itB,itE), it also outputs the feature vector features, corresponding to 0-form v in AT (the average of v for linels/surfels).

See also
Piecewise-smooth approximation using a discrete calculus model of Ambrosio-Tortorelli functional
Template Parameters
TAnyDigitalSurfaceeither kind of DigitalSurface, like ShortcutsGeometry::LightDigitalSurface or ShortcutsGeometry::DigitalSurface.
CellRangeConstIteratorthe type of iterator for traversing a range of cells
Parameters
[out]featuresthe vector of scalar feature values (a scalar field where 1 means continuity and 0 discontinuity in the reconstruction), evaluated in the range[itB,itE).
[in]itBthe start of the range of cells.
[in]itEpast the end of the range of cells.
[in]surfacethe digital surface
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • at-alpha [ 0.1 ]: parameter alpha in AT (data fit)
  • at-lambda [ 0.025 ]: parameter lambda in AT (1/length of discontinuities)
  • at-epsilon [ 0.5 ]: (last value of) parameter epsilon in AT (width of discontinuities)
  • at-epsilon-start[ 2.0 ]: first value for parameter epsilon in Gamma-convergence optimization (sequence of AT optimization with decreasing epsilon)
  • at-epsilon-ratio[ 2.0 ]: ratio between two consecutive epsilon value in Gamma-convergence optimization (sequence of AT optimization with decreasing epsilon)
  • at-max-iter [ 10 ]: maximum number of alternate minization in AT optimization
  • at-diff-v-max [ 0.0001]: stopping criterion that measures the loo-norm of the evolution of v between two iterations
  • at-v-policy ["Maximum"]: the policy when outputing feature vector v onto cells: "Average"|"Minimum"|"Maximum"
[in]inputthe input scalar field (a vector of scalar values)
Returns
the piecewise-smooth approximation of input.

Definition at line 1919 of file ShortcutsGeometry.h.

1927 {
1928 (void)surface; //param not used FIXME: JOL
1929
1930 int verbose = params[ "verbose" ].as<int>();
1931 Scalar alpha_at = params[ "at-alpha" ].as<Scalar>();
1932 Scalar lambda_at = params[ "at-lambda" ].as<Scalar>();
1933 Scalar epsilon1 = params[ "at-epsilon-start" ].as<Scalar>();
1934 Scalar epsilon2 = params[ "at-epsilon" ].as<Scalar>();
1935 Scalar epsilonr = params[ "at-epsilon-ratio" ].as<Scalar>();
1936 int max_iter = params[ "at-max-iter" ].as<int>();
1937 Scalar diff_v_max= params[ "at-diff-v-max" ].as<Scalar>();
1938 std::string policy = params[ "at-v-policy" ].as<std::string>();
1940 const auto calculus = CalculusFactory::createFromNSCells<2>( surfels.cbegin(), surfels.cend() );
1942 at_solver.initInputScalarFieldU2( input, surfels.cbegin(), surfels.cend() );
1943 at_solver.setUp( alpha_at, lambda_at );
1944 at_solver.solveGammaConvergence( epsilon1, epsilon2, epsilonr, false, diff_v_max, max_iter );
1945 auto output = input;
1946 at_solver.getOutputScalarFieldU2( output, surfels.cbegin(), surfels.cend() );
1947 auto p = ( policy == "Average" ) ? at_solver.Average
1948 : ( policy == "Minimum" ) ? at_solver.Minimum
1950 at_solver.getOutputScalarFieldV0( features, itB, itE, p );
1951 return output;
1952 }

◆ getATVectorFieldApproximation() [1/2]

template<typename TKSpace>
template<typename TAnyDigitalSurface, typename VectorFieldInput>
VectorFieldInput DGtal::ShortcutsGeometry< TKSpace >::getATVectorFieldApproximation ( CountedPtr< TAnyDigitalSurface > surface,
const SurfelRange & surfels,
const VectorFieldInput & input,
const Parameters & params = parametersATApproximation() | parametersGeometryEstimation() )
inlinestatic

Given any digital surface, a surfel range surfels, and an input vector field input, returns a piece-smooth approximation of input using Ambrosio-Tortorelli functional.

See also
Piecewise-smooth approximation using a discrete calculus model of Ambrosio-Tortorelli functional
Template Parameters
TAnyDigitalSurfaceeither kind of DigitalSurface, like ShortcutsGeometry::LightDigitalSurface or ShortcutsGeometry::DigitalSurface.
VectorFieldInputthe type of vector field for input values (RandomAccess container)
Parameters
[in]surfacethe digital surface
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • at-alpha [ 0.1 ]: parameter alpha in AT (data fit)
  • at-lambda [ 0.025 ]: parameter lambda in AT (1/length of discontinuities)
  • at-epsilon [ 0.5 ]: (last value of) parameter epsilon in AT (width of discontinuities)
  • at-epsilon-start[ 2.0 ]: first value for parameter epsilon in Gamma-convergence optimization (sequence of AT optimization with decreasing epsilon)
  • at-epsilon-ratio[ 2.0 ]: ratio between two consecutive epsilon value in Gamma-convergence optimization (sequence of AT optimization with decreasing epsilon)
  • at-max-iter [ 10 ]: maximum number of alternate minization in AT optimization
  • at-diff-v-max [ 0.0001]: stopping criterion that measures the loo-norm of the evolution of v between two iterations
[in]inputthe input vector field (a vector of vector values)
Returns
the piecewise-smooth approximation of input.

Definition at line 1731 of file ShortcutsGeometry.h.

1736 {
1737 (void)surface; //param not used. FIXME: JOL
1738
1739 int verbose = params[ "verbose" ].as<int>();
1740 Scalar alpha_at = params[ "at-alpha" ].as<Scalar>();
1741 Scalar lambda_at = params[ "at-lambda" ].as<Scalar>();
1742 Scalar epsilon1 = params[ "at-epsilon-start" ].as<Scalar>();
1743 Scalar epsilon2 = params[ "at-epsilon" ].as<Scalar>();
1744 Scalar epsilonr = params[ "at-epsilon-ratio" ].as<Scalar>();
1745 int max_iter = params[ "at-max-iter" ].as<int>();
1746 Scalar diff_v_max= params[ "at-diff-v-max" ].as<Scalar>();
1748 const auto calculus = CalculusFactory::createFromNSCells<2>( surfels.cbegin(), surfels.cend() );
1750 at_solver.initInputVectorFieldU2( input, surfels.cbegin(), surfels.cend() );
1751 at_solver.setUp( alpha_at, lambda_at );
1752 at_solver.solveGammaConvergence( epsilon1, epsilon2, epsilonr, false, diff_v_max, max_iter );
1753 auto output = input;
1754 at_solver.getOutputVectorFieldU2( output, surfels.cbegin(), surfels.cend() );
1755 return output;
1756 }

◆ getATVectorFieldApproximation() [2/2]

template<typename TKSpace>
template<typename TAnyDigitalSurface, typename VectorFieldInput, typename CellRangeConstIterator>
VectorFieldInput DGtal::ShortcutsGeometry< TKSpace >::getATVectorFieldApproximation ( Scalars & features,
CellRangeConstIterator itB,
CellRangeConstIterator itE,
CountedPtr< TAnyDigitalSurface > surface,
const SurfelRange & surfels,
const VectorFieldInput & input,
const Parameters & params = parametersATApproximation() | parametersGeometryEstimation() )
inlinestatic

Given any digital surface, a surfel range surfels, and an input vector field input, returns a piece-smooth approximation of input using Ambrosio-Tortorelli functional. Given a range of pointels, linels or 2-cells [itB,itE), it also outputs the feature vector features, corresponding to 0-form v in AT (the average of v for linels/surfels).

See also
Piecewise-smooth approximation using a discrete calculus model of Ambrosio-Tortorelli functional
Template Parameters
TAnyDigitalSurfaceeither kind of DigitalSurface, like ShortcutsGeometry::LightDigitalSurface or ShortcutsGeometry::DigitalSurface.
VectorFieldInputthe type of vector field for input values (RandomAccess container)
CellRangeConstIteratorthe type of iterator for traversing a range of cells
Parameters
[out]featuresthe vector of scalar feature values (a scalar field where 1 means continuity and 0 discontinuity in the reconstruction), evaluated in the range[itB,itE).
[in]itBthe start of the range of cells.
[in]itEpast the end of the range of cells.
[in]surfacethe digital surface
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • at-alpha [ 0.1 ]: parameter alpha in AT (data fit)
  • at-lambda [ 0.025 ]: parameter lambda in AT (1/length of discontinuities)
  • at-epsilon [ 0.5 ]: (last value of) parameter epsilon in AT (width of discontinuities)
  • at-epsilon-start[ 2.0 ]: first value for parameter epsilon in Gamma-convergence optimization (sequence of AT optimization with decreasing epsilon)
  • at-epsilon-ratio[ 2.0 ]: ratio between two consecutive epsilon value in Gamma-convergence optimization (sequence of AT optimization with decreasing epsilon)
  • at-max-iter [ 10 ]: maximum number of alternate minization in AT optimization
  • at-diff-v-max [ 0.0001]: stopping criterion that measures the loo-norm of the evolution of v between two iterations
  • at-v-policy ["Maximum"]: the policy when outputing feature vector v onto cells: "Average"|"Minimum"|"Maximum"
[in]inputthe input vector field (a vector of vector values)
Returns
the piecewise-smooth approximation of input.

Definition at line 1793 of file ShortcutsGeometry.h.

1801 {
1802 (void)surface; //param not used FIXME: JOL
1803
1804 int verbose = params[ "verbose" ].as<int>();
1805 Scalar alpha_at = params[ "at-alpha" ].as<Scalar>();
1806 Scalar lambda_at = params[ "at-lambda" ].as<Scalar>();
1807 Scalar epsilon1 = params[ "at-epsilon-start" ].as<Scalar>();
1808 Scalar epsilon2 = params[ "at-epsilon" ].as<Scalar>();
1809 Scalar epsilonr = params[ "at-epsilon-ratio" ].as<Scalar>();
1810 int max_iter = params[ "at-max-iter" ].as<int>();
1811 Scalar diff_v_max= params[ "at-diff-v-max" ].as<Scalar>();
1812 std::string policy = params[ "at-v-policy" ].as<std::string>();
1814 const auto calculus = CalculusFactory::createFromNSCells<2>( surfels.cbegin(), surfels.cend() );
1816 at_solver.initInputVectorFieldU2( input, surfels.cbegin(), surfels.cend() );
1817 at_solver.setUp( alpha_at, lambda_at );
1818 at_solver.solveGammaConvergence( epsilon1, epsilon2, epsilonr, false, diff_v_max, max_iter );
1819 auto output = input;
1820 at_solver.getOutputVectorFieldU2( output, surfels.cbegin(), surfels.cend() );
1821 auto p = ( policy == "Average" ) ? at_solver.Average
1822 : ( policy == "Minimum" ) ? at_solver.Minimum
1824 at_solver.getOutputScalarFieldV0( features, itB, itE, p );
1825 return output;
1826 }

◆ getCNCGaussianCurvatures() [1/3]

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getCNCGaussianCurvatures ( CountedPtr< typename Base::SurfaceMesh > mesh,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a SurfaceMesh, compute gaussian curvature at each face using CorrectedNormalCurrent method.

This overloads compute curvature for each face of the mesh.

Warning
In this code, only triangles with barycenters strictly inside the sphere are considered.
Parameters
meshThe surface mesh
params
  • unit_u: Whether the computed normals should be normalized or not
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II, CNC)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
The curvatures for each face of the mesh, in thn the order given by the mesh

Definition at line 587 of file ShortcutsGeometry.h.

590 {
592 std::iota(allFaces.begin(), allFaces.end(), 0);
593
595 }
static Scalars getCNCGaussianCurvatures(CountedPtr< typename Base::SurfaceMesh > mesh, const typename Base::SurfaceMesh::Faces &faces, const Parameters &params=parametersShapeGeometry())

◆ getCNCGaussianCurvatures() [2/3]

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getCNCGaussianCurvatures ( CountedPtr< typename Base::SurfaceMesh > mesh,
const typename Base::SurfaceMesh::Faces & faces,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a SurfaceMesh, compute gaussian curvature at each face using CorrectedNormalCurrent method.

Warning
In this code, only triangles with barycenters strictly inside the sphere are considered.
Parameters
meshThe surface mesh
facesThe faces to compute curvature at
params
  • unit_u: Whether the computed normals should be normalized or not
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II, CNC)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
The curvatures for each face of the mesh, in the same order faces

Definition at line 540 of file ShortcutsGeometry.h.

544 {
545 bool unit_u = params["unit_u"].as<int>();
546 double radius = params["r-radius"].as<double>();
547 double alpha = params["alpha"].as<double>();
548 double h = params["gridstep"].as<double>();
549 if ( alpha != 1.0 ) radius *= pow( h, alpha-1.0 );
550
552
553 const auto& mu0 = computer.computeMu0();
554 const auto& mu2 = computer.computeMu2();
555
556 Scalars curvatures(faces.size());
557 for (size_t i = 0; i < faces.size(); ++i)
558 {
559 const auto center = mesh->faceCentroid(faces[i]);
560 const auto area = mu0.measure(center, radius, faces[i]);
561 const auto lmu2 = mu2.measure(center, radius, faces[i]);
563 }
564
565 return curvatures;
566 }
CorrectedNormalCurrentComputer< RealPoint, RealVector > CNCComputer
std::vector< Scalar > Scalars

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::getCNCGaussianCurvatures(), and DGtal::ShortcutsGeometry< Z3i::KSpace >::getCNCGaussianCurvatures().

◆ getCNCGaussianCurvatures() [3/3]

template<typename TKSpace>
template<typename T>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getCNCGaussianCurvatures ( T & digitalObject,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a SurfaceMesh, compute mean curvature at each face using CorrectedNormalCurrent method.

Warning
In this code, only triangles with barycenters strictly inside the sphere are considered.
Template Parameters
TAny digital object convertible to surface mesh via Shortcuts::makePrimalSurfaceMesh
Parameters
digitalObjectA digital object
params
  • unit_u: Whether the computed normals should be normalized or not
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II, CNC)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
The curvatures for each face of the triangulated surface object

Definition at line 616 of file ShortcutsGeometry.h.

618 {
621 }
static CountedPtr< SurfaceMesh > makePrimalSurfaceMesh(Cell2Index &c2i, CountedPtr< ::DGtal::DigitalSurface< TContainer > > aSurface)
Definition Shortcuts.h:2633

◆ getCNCMeanCurvatures() [1/3]

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getCNCMeanCurvatures ( CountedPtr< typename Base::SurfaceMesh > mesh,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a SurfaceMesh, compute mean curvature at each face using CorrectedNormalCurrent method.

This overloads compute curvature for each face of the mesh.

Warning
In this code, only triangles with barycenters strictly inside the sphere are considered.
Parameters
meshThe surface mesh
params
  • unit_u: Whether the computed normals should be normalized or not
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II, CNC)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
The curvatures for each face of mesh, in the the order given by the mesh

Definition at line 446 of file ShortcutsGeometry.h.

449 {
451 std::iota(allFaces.begin(), allFaces.end(), 0);
452
454 }
static Scalars getCNCMeanCurvatures(CountedPtr< typename Base::SurfaceMesh > mesh, const typename Base::SurfaceMesh::Faces faces, const Parameters &params=parametersShapeGeometry())

◆ getCNCMeanCurvatures() [2/3]

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getCNCMeanCurvatures ( CountedPtr< typename Base::SurfaceMesh > mesh,
const typename Base::SurfaceMesh::Faces faces,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a SurfaceMesh, compute mean curvature at each face using CorrectedNormalCurrent method.

Warning
In this code, only triangles with barycenters strictly inside the sphere are considered.
Parameters
meshThe surface mesh
facesThe faces to compute curvature at
params
  • unit_u: Whether the computed normals should be normalized or not
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II, CNC)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
The curvatures for each face of the mesh, in the same order faces

Definition at line 399 of file ShortcutsGeometry.h.

403 {
404 bool unit_u = params["unit_u"].as<int>();
405 double radius = params["r-radius"].as<double>();
406 double alpha = params["alpha"].as<double>();
407 double h = params["gridstep"].as<double>();
408 if ( alpha != 1.0 ) radius *= pow( h, alpha-1.0 );
409
411
412 const auto& mu0 = computer.computeMu0();
413 const auto& mu1 = computer.computeMu1();
414
415 Scalars curvatures(faces.size());
416 for (size_t i = 0; i < faces.size(); ++i)
417 {
418 const auto center = mesh->faceCentroid(faces[i]);
419 const auto area = mu0.measure(center, radius, faces[i]);
420 const auto lmu1 = mu1.measure(center, radius, faces[i]);
422 }
423
424 return curvatures;
425 }

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::getCNCMeanCurvatures(), and DGtal::ShortcutsGeometry< Z3i::KSpace >::getCNCMeanCurvatures().

◆ getCNCMeanCurvatures() [3/3]

template<typename TKSpace>
template<typename T>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getCNCMeanCurvatures ( T & digitalObject,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a SurfaceMesh, compute mean curvature at each face using CorrectedNormalCurrent method.

Warning
In this code, only triangles with barycenters strictly inside the sphere are considered.
Template Parameters
Anydigital object convertible to surface mesh via Shortcuts::makePrimalSurfaceMesh
Parameters
digitalObjectA digital object
params
  • unit_u: Whether the computed normals should be normalized or not
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II, CNC)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
The curvatures for each face of the triangulated surface object

Definition at line 475 of file ShortcutsGeometry.h.

◆ getCNCPrincipalCurvaturesAndDirections() [1/3]

template<typename TKSpace>
std::tuple< Scalars, Scalars, RealVectors, RealVectors > DGtal::ShortcutsGeometry< TKSpace >::getCNCPrincipalCurvaturesAndDirections ( CountedPtr< typename Base::SurfaceMesh > mesh,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a SurfaceMesh, compute principal curvature at each face using CorrectedNormalCurrent method.

This overloads compute curvature for each face of the mesh.

Note
If no normals are provided for the faces, the normals will be computed (and set) using vertex normals if they exist and positions otherwise.
Warning
In this code, only triangles with barycenters strictly inside the sphere are considered.
Parameters
[in,out]meshThe surface mesh. The mesh will be modified if no face normals are provided.
[in]params
  • unit_u: Whether the computed normals should be normalized or not
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II, CNC)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
The principal curvatures for each face of the mesh, in the same order as mesh faces. The result is a 4-element tuples: [first curvatures, second curvatures, first directions, second directions].

Definition at line 925 of file ShortcutsGeometry.h.

928 {
930 std::iota(allFaces.begin(), allFaces.end(), 0);
931
933 }
static std::tuple< Scalars, Scalars, RealVectors, RealVectors > getCNCPrincipalCurvaturesAndDirections(CountedPtr< typename Base::SurfaceMesh > mesh, const typename Base::SurfaceMesh::Faces &faces, const Parameters &params=parametersShapeGeometry())

◆ getCNCPrincipalCurvaturesAndDirections() [2/3]

template<typename TKSpace>
std::tuple< Scalars, Scalars, RealVectors, RealVectors > DGtal::ShortcutsGeometry< TKSpace >::getCNCPrincipalCurvaturesAndDirections ( CountedPtr< typename Base::SurfaceMesh > mesh,
const typename Base::SurfaceMesh::Faces & faces,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a SurfaceMesh, compute principal curvature at each face using CorrectedNormalCurrent method.

Note
If no normals are provided for the faces, the normals will be computed (and set) using vertex normals if they exist and positions otherwise.
Warning
In this code, only triangles with barycenters strictly inside the sphere are considered.
Parameters
[in,out]meshThe surface mesh. The mesh will be modified if no face normals are provided.
[in]facesThe faces to compute curvature at
[in]params
  • unit_u: Whether the computed normals should be normalized or not
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II, CNC)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
The principal curvatures for each face of the mesh, in the same order as faces. The result is a 4-element tuples: [first curvatures, second curvatures, first directions, second directions].

Definition at line 857 of file ShortcutsGeometry.h.

861 {
862 bool unit_u = params["unit_u"].as<int>();
863 double radius = params["r-radius"].as<double>();
864 double alpha = params["alpha"].as<double>();
865 double h = params["gridstep"].as<double>();
866 if ( alpha != 1.0 ) radius *= pow( h, alpha-1.0 );
867
869
870 const auto& mu0 = computer.computeMu0();
871 const auto& muxy = computer.computeMuXY();
872
873 if (mesh->faceNormals().size() == 0)
874 {
875 // Try to use vertex normals if any
876 if (mesh->vertexNormals().size() == 0)
877 mesh->computeFaceNormalsFromPositions();
878 else
879 mesh->computeFaceNormalsFromVertexNormals();
880 }
881
882 const auto& normals = mesh->faceNormals();
883
884 Scalars k1(faces.size()), k2(faces.size());
885 RealVectors d1(faces.size()), d2(faces.size());
886
887 for (size_t i = 0; i < faces.size(); ++i)
888 {
889 const auto center = mesh->faceCentroid(faces[i]);
890 const auto area = mu0 .measure(center, radius, faces[i]);
891 const auto lmuxy = muxy.measure(center, radius, faces[i]);
892 std::tie(k1[i], k2[i], d1[i], d2[i]) =
894 }
895
896 return std::make_tuple(k1, k2, d1, d2);
897 }
std::vector< RealVector > RealVectors
static std::tuple< Scalar, Scalar, RealVector, RealVector > principalCurvatures(Scalar mu0, RealTensor muXY, const RealVector &N)

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::getCNCPrincipalCurvaturesAndDirections(), and DGtal::ShortcutsGeometry< Z3i::KSpace >::getCNCPrincipalCurvaturesAndDirections().

◆ getCNCPrincipalCurvaturesAndDirections() [3/3]

template<typename TKSpace>
template<typename T>
std::tuple< Scalars, Scalars, RealVectors, RealVectors > DGtal::ShortcutsGeometry< TKSpace >::getCNCPrincipalCurvaturesAndDirections ( T & digitalObject,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a SurfaceMesh, compute principal curvature at each face using CorrectedNormalCurrent method.

Warning
In this code, only triangles with barycenters strictly inside the sphere are considered.
Template Parameters
TAny digital object convertible to surface mesh via Shortcuts::makePrimalSurfaceMesh
Parameters
digitalObjectA digital object
params
  • unit_u: Whether the computed normals should be normalized or not
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II, CNC)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
The curvatures for each face of the triangulated surface object

Definition at line 956 of file ShortcutsGeometry.h.

◆ getCTrivialNormalVectors()

template<typename TKSpace>
template<typename TAnyDigitalSurface>
RealVectors DGtal::ShortcutsGeometry< TKSpace >::getCTrivialNormalVectors ( CountedPtr< TAnyDigitalSurface > surface,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() )
inlinestatic

Given a digital surface surface, a sequence of surfels, and some parameters params, returns the convolved trivial normal vector estimations at the specified surfels, in the same order.

Template Parameters
TAnyDigitalSurfaceeither kind of DigitalSurface, like ShortcutsGeometry::LightDigitalSurface or ShortcutsGeometry::DigitalSurface.
Parameters
[in]surfacethe digital surface
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • t-ring [ 3.0]: the radius used when computing convolved trivial normals (it is a graph distance, not related to the grid step).
Returns
the vector containing the estimated normals, in the same order as surfels.

Definition at line 1035 of file ShortcutsGeometry.h.

1039 {
1040 int verbose = params[ "verbose" ].as<int>();
1041 Scalar t = params[ "t-ring" ].as<double>();
1043 typedef LpMetric<Space> Metric;
1049 if ( verbose > 0 )
1050 trace.info() << "- CTrivial normal t-ring=" << t << " (discrete)" << std::endl;
1051 const Functor fct( 1.0, t );
1052 const KSpace & K = surface->container().space();
1053 Metric aMetric( 2.0 );
1058 estimator.attach( *surface);
1059 estimator.setParams( aMetric, surfelFct, fct, t );
1060 estimator.init( 1.0, surfels.begin(), surfels.end());
1061 estimator.eval( surfels.begin(), surfels.end(),
1063 std::transform( n_estimations.cbegin(), n_estimations.cend(), n_estimations.begin(),
1064 [] ( RealVector v ) { return -v; } );
1065 return n_estimations;
1066 }
TKSpace KSpace
Digital cellular space.
Space::RealVector RealVector
Vector with floating-point coordinates.
LightDigitalSurface::Surfel Surfel

◆ getDirectionToClosestSite()

template<typename TKSpace>
template<uint32_t p, typename PointRangeSites, typename PointRange>
std::vector< Vector > DGtal::ShortcutsGeometry< TKSpace >::getDirectionToClosestSite ( const PointRange & points,
const PointRangeSites & sites,
const Parameters & params = parametersVoronoiMap() )
inlinestatic

Computes the vector to the closest site from a range of points.

Template Parameters
pThe exponent in the Lp metric
PointRangeThe range of point
PointRangeSitesThe range of sites
Parameters
pointsThe one to compute the closest site of
sitesThe list of sites
paramsParameters
Returns
A vector of direction to the closest in the same order as 'points'.

Definition at line 2230 of file ShortcutsGeometry.h.

2234 {
2237
2238 // Compute domain of points
2239 Point pmin = *points.begin();
2240 Point pmax = pmin;
2241
2242 size_t pCount = 0;
2243 for (auto it = points.begin(); it != points.end(); ++it)
2244 {
2245 pCount ++;
2246 for (size_t i = 0; i < Space::dimension; ++i)
2247 {
2248 pmin[i] = std::min(pmin[i], (*it)[i] - 1);
2249 pmax[i] = std::max(pmax[i], (*it)[i] + 1);
2250 }
2251 }
2252
2253 for (auto it = sites.begin(); it != sites.end(); ++it)
2254 {
2255 for (size_t i = 0; i < Space::dimension; ++i)
2256 {
2257 pmin[i] = std::min(pmin[i], (*it)[i] - 1);
2258 pmax[i] = std::max(pmax[i], (*it)[i] + 1);
2259 }
2260 }
2261
2263
2264 DigitalSet set(domain); set.insert(sites.begin(), sites.end());
2266 Metric metric;
2267
2268
2269 typename VoroMap::PeriodicitySpec specs = {false, false, false};
2270 if (params["toroidal-x"].as<int>()) specs[0] = true;
2271 if (params["toroidal-y"].as<int>()) specs[1] = true;
2272 if (params["toroidal-z"].as<int>()) specs[2] = true;
2273
2275
2277 size_t i = 0;
2278 for (auto it = points.begin(); it != points.end(); ++it)
2279 {
2280 directions[i++] = map(*it);
2281 }
2282 return directions;
2283 }
Space::Point Point
Point with integer coordinates.
DigitalSetByAssociativeContainer< Domain, std::unordered_set< typename Domain::Point > > DigitalSet
functors::NotPointPredicate< DigitalSet > VoronoiPointPredicate
HyperRectDomain< Space > Domain
An (hyper-)rectangular domain.
Domain domain

◆ getDistanceToClosestSite()

template<typename TKSpace>
template<uint32_t p, typename PointRangeSites, typename PointRange>
std::vector< typename ExactPredicateLpSeparableMetric< Space, p >::Value > DGtal::ShortcutsGeometry< TKSpace >::getDistanceToClosestSite ( const PointRange & points,
const PointRangeSites & sites,
const Parameters & params = parametersVoronoiMap() )
inlinestatic

Computes the distances to the closest site from a range of points.

Template Parameters
pThe exponent in the Lp metric
PointRangeThe range of point
PointRangeSitesThe range of sites
Parameters
pointsThe one to compute the closest site of
sitesThe list of sites
paramsParameters
Returns
A vector of distances to the closest in the same order as 'points'.

Definition at line 2300 of file ShortcutsGeometry.h.

2304 {
2307
2308 // Compute domain of points
2309 Point pmin = *points.begin();
2310 Point pmax = pmin;
2311
2312 size_t pCount = 0;
2313 for (auto it = points.begin(); it != points.end(); ++it)
2314 {
2315 pCount ++;
2316 for (size_t i = 0; i < Space::dimension; ++i)
2317 {
2318 pmin[i] = std::min(pmin[i], (*it)[i] - 1);
2319 pmax[i] = std::max(pmax[i], (*it)[i] + 1);
2320 }
2321 }
2322
2323 for (auto it = sites.begin(); it != sites.end(); ++it)
2324 {
2325 for (size_t i = 0; i < Space::dimension; ++i)
2326 {
2327 pmin[i] = std::min(pmin[i], (*it)[i] - 1);
2328 pmax[i] = std::max(pmax[i], (*it)[i] + 1);
2329 }
2330 }
2331
2333
2334 DigitalSet set(domain); set.insert(sites.begin(), sites.end());
2336 Metric metric;
2337
2338 typename DTMap::PeriodicitySpec specs = {false, false, false};
2339 if (params["toroidal-x"].as<int>()) specs[0] = true;
2340 if (params["toroidal-y"].as<int>()) specs[1] = true;
2341 if (params["toroidal-z"].as<int>()) specs[2] = true;
2342
2343 auto map = DTMap(domain, predicate, metric, specs);
2344
2346 size_t i = 0;
2347 for (auto it = points.begin(); it != points.end(); ++it)
2348 {
2349 directions[i++] = map(*it);
2350 }
2351 return directions;
2352 }

◆ getDistanceTransformation()

template<typename TKSpace>
template<uint32_t p, typename PointRange>
DistanceTransformation< Space, VoronoiPointPredicate, ExactPredicateLpSeparableMetric< Space, p > > DGtal::ShortcutsGeometry< TKSpace >::getDistanceTransformation ( Domain domain,
const PointRange & sites,
const Parameters & params = parametersVoronoiMap() )
inlinestatic

Computes the Distance Transformation on a domain, where sites are given through a range.

Note
This overload returns a distance transformation, ie. where operator() returns the distance to the closest site for the considered Lp metric.
Template Parameters
pThe exponent in the Lp metric
PointRangeAn iterable of points (std::vector, DGtal::DigitalSet*, ...)
Parameters
domainThe associated domain on which the VoronoiMap is computed
sitesThe list of sites
paramsthe parameters
Returns
The DistanceTransformation within a domain with prescribed sites

Definition at line 2193 of file ShortcutsGeometry.h.

2196 {
2199 DigitalSet set(domain); set.insert(sites.begin(), sites.end());
2201 Metric metric;
2202
2203 typename DTMap::PeriodicitySpec specs = {false, false, false};
2204 if (params["toroidal-x"].as<int>()) specs[0] = true;
2205 if (params["toroidal-y"].as<int>()) specs[1] = true;
2206 if (params["toroidal-z"].as<int>()) specs[2] = true;
2207
2208 // Do not return a pointer here for two reasons:
2209 // - The distance transform will not be passed anywhere else
2210 // - The operator() is less accessible with pointers.
2211 return DTMap(domain, predicate, metric, specs);
2212 }

◆ getFirstPrincipalCurvatures()

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getFirstPrincipalCurvatures ( CountedPtr< ImplicitShape3D > shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a space K, an implicit shape, a sequence of principal curvatures at the specified surfels, in the same order.

Note
that the first principal curvature is approximated by projecting the surfel centroid onto the implicit 3D shape.
Parameters
[in]shapethe implicit shape.
[in]Kthe Khalimsky space whose domain encompasses the digital shape.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • projectionMaxIter [ 20]: the maximum number of iteration for the projection.
  • projectionAccuracy[0.0001]: the zero-proximity stop criterion during projection.
  • projectionGamma [ 0.5]: the damping coefficient of the projection.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
Returns
the vector containing the first principal curvatures, in the same order as surfels.

Definition at line 642 of file ShortcutsGeometry.h.

647 {
650 int maxIter = params[ "projectionMaxIter" ].as<int>();
651 double accuracy = params[ "projectionAccuracy" ].as<double>();
652 double gamma = params[ "projectionGamma" ].as<double>();
653 Scalar gridstep = params[ "gridstep" ].as<Scalar>();
654 true_estimator.attach( *shape );
657 true_estimator.init( gridstep, surfels.begin(), surfels.end() );
658 true_estimator.eval( surfels.begin(), surfels.end(),
660 return n_true_estimations;
661 }
TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, FirstPrincipalCurvatureFunctor > TrueFirstPrincipalCurvatureEstimator
sgf::ShapeFirstPrincipalCurvatureFunctor< ImplicitShape3D > FirstPrincipalCurvatureFunctor

◆ getFirstPrincipalDirections()

template<typename TKSpace>
RealVectors DGtal::ShortcutsGeometry< TKSpace >::getFirstPrincipalDirections ( CountedPtr< ImplicitShape3D > shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a space K, an implicit shape, a sequence of surfels, and a gridstep h, returns the first principal directions (corresponding to the smallest principal curvature) at the specified surfels, in the same order.

Note
that the first principal direction is approximated by projecting the surfel centroid onto the implicit 3D shape.
Parameters
[in]shapethe implicit shape.
[in]Kthe Khalimsky space whose domain encompasses the digital shape.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • projectionMaxIter [ 20]: the maximum number of iteration for the projection.
  • projectionAccuracy[0.0001]: the zero-proximity stop criterion during projection.
  • projectionGamma [ 0.5]: the damping coefficient of the projection.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
Returns
the vector containing the first principal directions, in the same order as surfels.

Definition at line 726 of file ShortcutsGeometry.h.

731 {
734 int maxIter = params[ "projectionMaxIter" ].as<int>();
735 double accuracy = params[ "projectionAccuracy" ].as<double>();
736 double gamma = params[ "projectionGamma" ].as<double>();
737 Scalar gridstep = params[ "gridstep" ].as<Scalar>();
738 true_estimator.attach( *shape );
741 true_estimator.init( gridstep, surfels.begin(), surfels.end() );
742 true_estimator.eval( surfels.begin(), surfels.end(),
744 return n_true_estimations;
745 }
sgf::ShapeFirstPrincipalDirectionFunctor< ImplicitShape3D > FirstPrincipalDirectionFunctor
TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, FirstPrincipalDirectionFunctor > TrueFirstPrincipalDirectionEstimator

◆ getGaussianCurvatures()

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getGaussianCurvatures ( CountedPtr< ImplicitShape3D > shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a space K, an implicit shape, a sequence of surfels, and a gridstep h, returns the gaussian curvatures at the specified surfels, in the same order.

Note
that the gaussian curvature is approximated by projecting the surfel centroid onto the implicit 3D shape.
Parameters
[in]shapethe implicit shape.
[in]Kthe Khalimsky space whose domain encompasses the digital shape.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • projectionMaxIter [ 20]: the maximum number of iteration for the projection.
  • projectionAccuracy[0.0001]: the zero-proximity stop criterion during projection.
  • projectionGamma [ 0.5]: the damping coefficient of the projection.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
Returns
the vector containing the gaussian curvatures, in the same order as surfels.

Definition at line 502 of file ShortcutsGeometry.h.

507 {
510 int maxIter = params[ "projectionMaxIter" ].as<int>();
511 double accuracy = params[ "projectionAccuracy" ].as<double>();
512 double gamma = params[ "projectionGamma" ].as<double>();
513 Scalar gridstep = params[ "gridstep" ].as<Scalar>();
514 true_estimator.attach( *shape );
516 true_estimator.init( gridstep, surfels.begin(), surfels.end() );
517 true_estimator.eval( surfels.begin(), surfels.end(),
519 return n_true_estimations;
520 }
TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, GaussianCurvatureFunctor > TrueGaussianCurvatureEstimator
sgf::ShapeGaussianCurvatureFunctor< ImplicitShape3D > GaussianCurvatureFunctor

◆ getIIGaussianCurvatures() [1/3]

template<typename TKSpace>
template<typename TPointPredicate>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getIIGaussianCurvatures ( const TPointPredicate & shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() )
inlinestatic

Given an arbitrary PointPredicate shape: Point -> boolean, a Khalimsky space K, a sequence of surfels, and some parameters params, returns the Gaussian curvature Integral Invariant (II) estimation at the specified surfels, in the same order.

Template Parameters
TPointPredicateany type of map Point -> boolean.
Parameters
[in]shapea function Point -> boolean telling if you are inside the shape.
[in]Kthe Khalimsky space where the shape and surfels live.
[in]surfelsthe sequence of surfels at which we compute the Gaussian curvatures
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
the vector containing the estimated Gaussian curvatures, in the same order as surfels.
Note
The function is faster when surfels are in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1513 of file ShortcutsGeometry.h.

1519 {
1523
1525 int verbose = params[ "verbose" ].as<int>();
1526 Scalar h = params[ "gridstep" ].as<Scalar>();
1527 Scalar r = params[ "r-radius" ].as<Scalar>();
1528 Scalar alpha = params[ "alpha" ].as<Scalar>();
1529 if ( alpha != 1.0 ) r *= pow( h, alpha-1.0 );
1530 if ( verbose > 0 )
1531 {
1532 trace.info() << "- II Gaussian curvature alpha=" << alpha << std::endl;
1533 trace.info() << "- II Gaussian curvature r=" << (r*h) << " (continuous) "
1534 << r << " (discrete)" << std::endl;
1535 }
1537 functor.init( h, r*h );
1539 ii_estimator.attach( K, shape );
1540 ii_estimator.setParams( r );
1541 ii_estimator.init( h, surfels.begin(), surfels.end() );
1542 ii_estimator.eval( surfels.begin(), surfels.end(),
1544 return mc_estimations;
1545 }

◆ getIIGaussianCurvatures() [2/3]

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getIIGaussianCurvatures ( CountedPtr< BinaryImage > bimage,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() )
inlinestatic

Given a digital shape bimage, a sequence of surfels, and some parameters vm, returns the Gaussian curvature Integral Invariant (II) estimation at the specified surfels, in the same order.

Parameters
[in]bimagethe characteristic function of the shape as a binary image (inside is true, outside is false).
[in]surfelsthe sequence of surfels at which we compute the Gaussian curvatures
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
the vector containing the estimated Gaussian curvatures, in the same order as surfels.
Note
The function is faster when surfels are in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1442 of file ShortcutsGeometry.h.

1447 {
1448 auto K = getKSpace( bimage, params );
1450 }
static Scalars getIIGaussianCurvatures(CountedPtr< BinaryImage > bimage, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())
static KSpace getKSpace(const Point &low, const Point &up, Parameters params=parametersKSpace())
Definition Shortcuts.h:329

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIGaussianCurvatures(), and DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIGaussianCurvatures().

◆ getIIGaussianCurvatures() [3/3]

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getIIGaussianCurvatures ( CountedPtr< DigitizedImplicitShape3D > dshape,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() | parametersDigitizedImplicitShape3D() )
inlinestatic

Given a digitized implicit shape dshape, a sequence of surfels, and some parameters params, returns the Gaussian curvature Integral Invariant (II) estimation at the specified surfels, in the same order.

Parameters
[in]dshapethe digitized implicit shape, which is an implicitly defined characteristic function.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
  • minAABB [ -10.0]: the min value of the AABB bounding box (domain)
  • maxAABB [ 10.0]: the max value of the AABB bounding box (domain)
  • offset [ 5.0]: the digital dilation of the digital space, useful when you process shapes and that you add noise.
  • closed [ 1]: specifies if the Khalimsky space is closed (!=0) or not (==0)
Returns
the vector containing the estimated Gaussian curvatures, in the same order as surfels.
Note
It is better to have surfels in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1478 of file ShortcutsGeometry.h.

1484 {
1485 auto K = getKSpace( params );
1487 }

◆ getIIMeanCurvatures() [1/3]

template<typename TKSpace>
template<typename TPointPredicate>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getIIMeanCurvatures ( const TPointPredicate & shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() )
inlinestatic

Given an arbitrary PointPredicate shape: Point -> boolean, a Khalimsky space K, a sequence of surfels, and some parameters params, returns the mean curvature Integral Invariant (II) estimation at the specified surfels, in the same order.

Template Parameters
TPointPredicateany type of map Point -> boolean.
Parameters
[in]shapea function Point -> boolean telling if you are inside the shape.
[in]Kthe Khalimsky space where the shape and surfels live.
[in]surfelsthe sequence of surfels at which we compute the mean curvatures
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
the vector containing the estimated mean curvatures, in the same order as surfels.
Note
The function is faster when surfels are in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1389 of file ShortcutsGeometry.h.

1395 {
1399
1401 int verbose = params[ "verbose" ].as<int>();
1402 Scalar h = params[ "gridstep" ].as<Scalar>();
1403 Scalar r = params[ "r-radius" ].as<Scalar>();
1404 Scalar alpha = params[ "alpha" ].as<Scalar>();
1405 if ( alpha != 1.0 ) r *= pow( h, alpha-1.0 );
1406 if ( verbose > 0 )
1407 {
1408 trace.info() << "- II mean curvature alpha=" << alpha << std::endl;
1409 trace.info() << "- II mean curvature r=" << (r*h) << " (continuous) "
1410 << r << " (discrete)" << std::endl;
1411 }
1413 functor.init( h, r*h );
1415 ii_estimator.attach( K, shape );
1416 ii_estimator.setParams( r );
1417 ii_estimator.init( h, surfels.begin(), surfels.end() );
1418 ii_estimator.eval( surfels.begin(), surfels.end(),
1420 return mc_estimations;
1421 }

◆ getIIMeanCurvatures() [2/3]

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getIIMeanCurvatures ( CountedPtr< BinaryImage > bimage,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() )
inlinestatic

Given a digital shape bimage, a sequence of surfels, and some parameters vm, returns the mean curvature Integral Invariant (II) estimation at the specified surfels, in the same order.

Parameters
[in]bimagethe characteristic function of the shape as a binary image (inside is true, outside is false).
[in]surfelsthe sequence of surfels at which we compute the mean curvatures
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
the vector containing the estimated mean curvatures, in the same order as surfels.
Note
The function is faster when surfels are in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1318 of file ShortcutsGeometry.h.

1323 {
1324 auto K = getKSpace( bimage, params );
1326 }
static Scalars getIIMeanCurvatures(CountedPtr< BinaryImage > bimage, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIMeanCurvatures(), and DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIMeanCurvatures().

◆ getIIMeanCurvatures() [3/3]

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getIIMeanCurvatures ( CountedPtr< DigitizedImplicitShape3D > dshape,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() | parametersDigitizedImplicitShape3D() )
inlinestatic

Given a digitized implicit shape dshape, a sequence of surfels, and some parameters params, returns the mean curvature Integral Invariant (II) estimation at the specified surfels, in the same order.

Parameters
[in]dshapethe digitized implicit shape, which is an implicitly defined characteristic function.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
  • minAABB [ -10.0]: the min value of the AABB bounding box (domain)
  • maxAABB [ 10.0]: the max value of the AABB bounding box (domain)
  • offset [ 5.0]: the digital dilation of the digital space, useful when you process shapes and that you add noise.
  • closed [ 1]: specifies if the Khalimsky space is closed (!=0) or not (==0)
Returns
the vector containing the estimated mean curvatures, in the same order as surfels.
Note
It is better to have surfels in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1354 of file ShortcutsGeometry.h.

1360 {
1361 auto K = getKSpace( params );
1363 }

◆ getIINormalVectors() [1/3]

template<typename TKSpace>
template<typename TPointPredicate>
RealVectors DGtal::ShortcutsGeometry< TKSpace >::getIINormalVectors ( const TPointPredicate & shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() )
inlinestatic

Given an arbitrary PointPredicate shape: Point -> boolean, a Khalimsky space K, a sequence of surfels, and some parameters params, returns the normal Integral Invariant (II) estimation at the specified surfels, in the same order.

Template Parameters
TPointPredicateany type of map Point -> boolean.
Parameters
[in]shapea function Point -> boolean telling if you are inside the shape.
[in]Kthe Khalimsky space where the shape and surfels live.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
the vector containing the estimated normals, in the same order as surfels.
Note
Be careful, normals are reoriented with respect to Trivial normals. If you wish a more robust orientation, use getCTrivialNormalVectors.
It is better to have surfels in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1262 of file ShortcutsGeometry.h.

1268 {
1272
1274 int verbose = params[ "verbose" ].as<int>();
1275 Scalar h = params[ "gridstep" ].as<Scalar>();
1276 Scalar r = params[ "r-radius" ].as<Scalar>();
1277 Scalar alpha = params[ "alpha" ].as<Scalar>();
1278 if ( alpha != 1.0 ) r *= pow( h, alpha-1.0 );
1279 if ( verbose > 0 )
1280 {
1281 trace.info() << "- II normal alpha=" << alpha << std::endl;
1282 trace.info() << "- II normal r=" << (r*h) << " (continuous) "
1283 << r << " (discrete)" << std::endl;
1284 }
1286 functor.init( h, r*h );
1288 ii_estimator.attach( K, shape );
1289 ii_estimator.setParams( r );
1290 ii_estimator.init( h, surfels.begin(), surfels.end() );
1291 ii_estimator.eval( surfels.begin(), surfels.end(),
1295 return n_estimations;
1296 }
static RealVectors getTrivialNormalVectors(const KSpace &K, const SurfelRange &surfels)
static void orientVectors(RealVectors &v, const RealVectors &ref_v)

◆ getIINormalVectors() [2/3]

template<typename TKSpace>
RealVectors DGtal::ShortcutsGeometry< TKSpace >::getIINormalVectors ( CountedPtr< BinaryImage > bimage,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() )
inlinestatic

Given a digital shape bimage, a sequence of surfels, and some parameters params, returns the normal Integral Invariant (II) estimation at the specified surfels, in the same order.

Parameters
[in]bimagethe characteristic function of the shape as a binary image (inside is true, outside is false).
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
the vector containing the estimated normals, in the same order as surfels.
Note
Be careful, normals are reoriented with respect to Trivial normals. If you wish a more robust orientation, use getCTrivialNormalVectors.
It is better to have surfels in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1185 of file ShortcutsGeometry.h.

1190 {
1191 auto K = getKSpace( bimage, params );
1193 }
static RealVectors getIINormalVectors(CountedPtr< BinaryImage > bimage, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::getIINormalVectors(), and DGtal::ShortcutsGeometry< Z3i::KSpace >::getIINormalVectors().

◆ getIINormalVectors() [3/3]

template<typename TKSpace>
RealVectors DGtal::ShortcutsGeometry< TKSpace >::getIINormalVectors ( CountedPtr< DigitizedImplicitShape3D > dshape,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() | parametersDigitizedImplicitShape3D() )
inlinestatic

Given a digitized implicit shape dshape, a sequence of surfels, and some parameters params, returns the normal Integral Invariant (II) estimation at the specified surfels, in the same order.

Parameters
[in]dshapethe digitized implicit shape, which is an implicitly defined characteristic function.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
  • minAABB [ -10.0]: the min value of the AABB bounding box (domain)
  • maxAABB [ 10.0]: the max value of the AABB bounding box (domain)
  • offset [ 5.0]: the digital dilation of the digital space, useful when you process shapes and that you add noise.
  • closed [ 1]: specifies if the Khalimsky space is closed (!=0) or not (==0)
Returns
the vector containing the estimated normals, in the same order as surfels.
Note
Be careful, normals are reoriented with respect to Trivial normals. If you wish a more robust orientation, use getCTrivialNormalVectors.
It is better to have surfels in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1225 of file ShortcutsGeometry.h.

1231 {
1232 auto K = getKSpace( params );
1234 }

◆ getIIPrincipalCurvaturesAndDirections() [1/3]

template<typename TKSpace>
template<typename TPointPredicate>
CurvatureTensorQuantities DGtal::ShortcutsGeometry< TKSpace >::getIIPrincipalCurvaturesAndDirections ( const TPointPredicate & shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() )
inlinestatic

Given an arbitrary PointPredicate shape: Point -> boolean, a Khalimsky space K, a sequence of surfels, and some parameters params, returns the principal curvatures and directions using Integral Invariant (II) estimation at the specified surfels, in the same order.

Template Parameters
TPointPredicateany type of map Point -> boolean.
Parameters
[in]shapea function Point -> boolean telling if you are inside the shape.
[in]Kthe Khalimsky space where the shape and surfels live.
[in]surfelsthe sequence of surfels at which we compute the Gaussian curvatures
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).;
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
the vector containing the estimated principal curvatures and directions, in the same order as surfels.
Note
The function is faster when surfels are in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1639 of file ShortcutsGeometry.h.

1645 {
1648
1650 int verbose = params[ "verbose" ].as<int>();
1651 Scalar h = params[ "gridstep" ].as<Scalar>();
1652 Scalar r = params[ "r-radius" ].as<Scalar>();
1653 Scalar alpha = params[ "alpha" ].as<Scalar>();
1654 if ( alpha != 1.0 ) r *= pow( h, alpha-1.0 );
1655 if ( verbose > 0 )
1656 {
1657 trace.info() << "- II principal curvatures and directions alpha=" << alpha << std::endl;
1658 trace.info() << "- II principal curvatures and directions r=" << (r*h) << " (continuous) "
1659 << r << " (discrete)" << std::endl;
1660 }
1662 functor.init( h, r*h );
1664 ii_estimator.attach( K, shape );
1665 ii_estimator.setParams( r );
1666 ii_estimator.init( h, surfels.begin(), surfels.end() );
1667 ii_estimator.eval( surfels.begin(), surfels.end(),
1669 return mc_estimations;
1670 }
std::vector< CurvatureTensorQuantity > CurvatureTensorQuantities

◆ getIIPrincipalCurvaturesAndDirections() [2/3]

template<typename TKSpace>
CurvatureTensorQuantities DGtal::ShortcutsGeometry< TKSpace >::getIIPrincipalCurvaturesAndDirections ( CountedPtr< BinaryImage > bimage,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() )
inlinestatic

Given a digital shape bimage, a sequence of surfels, and some parameters vm, returns the principal curvatures and directions using an Integral Invariant (II) estimation at the specified surfels, in the same order.

Parameters
[in]bimagethe characteristic function of the shape as a binary image (inside is true, outside is false).
[in]surfelsthe sequence of surfels at which we compute the Gaussian curvatures
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
Returns
the vector containing the estimated Gaussian curvatures, in the same order as surfels.
Note
The function is faster when surfels are in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1567 of file ShortcutsGeometry.h.

1572 {
1573 auto K = getKSpace( bimage, params );
1575 }
static CurvatureTensorQuantities getIIPrincipalCurvaturesAndDirections(CountedPtr< BinaryImage > bimage, const SurfelRange &surfels, const Parameters &params=parametersGeometryEstimation()|parametersKSpace())

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIPrincipalCurvaturesAndDirections(), and DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIPrincipalCurvaturesAndDirections().

◆ getIIPrincipalCurvaturesAndDirections() [3/3]

template<typename TKSpace>
CurvatureTensorQuantities DGtal::ShortcutsGeometry< TKSpace >::getIIPrincipalCurvaturesAndDirections ( CountedPtr< DigitizedImplicitShape3D > dshape,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() | parametersKSpace() | parametersDigitizedImplicitShape3D() )
inlinestatic

Given a digital shape dshape, a sequence of surfels, and some parameters vm, returns the principal curvatures and directions using an Integral Invariant (II) estimation at the specified surfels, in the same order.

Parameters
[in]dshapethe digitized implicit shape, which is an implicitly defined characteristic function.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • gridstep [ 1.0]: the digitization gridstep (often denoted by h).
  • minAABB [ -10.0]: the min value of the AABB bounding box (domain)
  • maxAABB [ 10.0]: the max value of the AABB bounding box (domain)
  • offset [ 5.0]: the digital dilation of the digital space, useful when you process shapes adding some noise.
  • closed [ 1]: specifies if the Khalimsky space is closed (!=0) or not (==0)
Returns
the vector containing the estimated principal curvatures and directions, in the same order as surfels.
Note
It is better to have surfels in a specific order, as given for instance by a depth-first traversal (see getSurfelRange)

Definition at line 1604 of file ShortcutsGeometry.h.

1610 {
1611 auto K = getKSpace( params );
1613 }

◆ getKSpace() [1/6]

template<typename TKSpace>
KSpace DGtal::Shortcuts< TKSpace >::getKSpace ( const Point & low,
const Point & up,
Parameters params = parametersKSpace() )
inlinestatic

Builds a Khalimsky space that encompasses the lower and upper digital points. Note that digital points are cells of the Khalimsky space with maximal dimensions. A closed Khalimsky space adds lower dimensional cells all around its boundary to define a closed complex.

Parameters
[in]lowthe lowest point in the space
[in]upthe highest point in the space
[in]paramsthe parameters:
  • closed [1]: specifies if the Khalimsky space is closed (!=0) or not (==0).
Returns
the Khalimsky space.

Definition at line 329 of file Shortcuts.h.

331 {
332 int closed = params[ "closed" ].as<int>();
333 KSpace K;
334 if ( ! K.init( low, up, closed ) )
335 trace.error() << "[Shortcuts::getKSpace]"
336 << " Error building Khalimsky space K=" << K << std::endl;
337 return K;
338 }

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIGaussianCurvatures(), DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIGaussianCurvatures(), DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIMeanCurvatures(), DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIMeanCurvatures(), DGtal::ShortcutsGeometry< Z3i::KSpace >::getIINormalVectors(), DGtal::ShortcutsGeometry< Z3i::KSpace >::getIINormalVectors(), DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIPrincipalCurvaturesAndDirections(), and DGtal::ShortcutsGeometry< Z3i::KSpace >::getIIPrincipalCurvaturesAndDirections().

◆ getKSpace() [2/6]

template<typename TKSpace>
template<typename TDigitalSurfaceContainer>
KSpace DGtal::Shortcuts< TKSpace >::getKSpace ( CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface)
inlinestatic
Template Parameters
TDigitalSurfaceContainereither kind of DigitalSurfaceContainer
Parameters
[in]surfacea smart pointer on a (light or not) digital surface (e.g. DigitalSurface or LightDigitalSurface).
Returns
the Khalimsky space associated to the given surface.

Definition at line 393 of file Shortcuts.h.

395 {
396 return surface->container().space();
397 }

◆ getKSpace() [3/6]

template<typename TKSpace>
template<typename TDigitalSurfaceContainer>
KSpace DGtal::Shortcuts< TKSpace >::getKSpace ( CountedPtr< ::DGtal::IndexedDigitalSurface< TDigitalSurfaceContainer > > surface)
inlinestatic
Template Parameters
TDigitalSurfaceContainereither kind of DigitalSurfaceContainer
Parameters
[in]surfacea smart pointer on any indexed digital surface.
Returns
the Khalimsky space associated to the given surface.

Definition at line 404 of file Shortcuts.h.

406 {
407 return surface->container().space();
408 }

◆ getKSpace() [4/6]

template<typename TKSpace>
KSpace DGtal::Shortcuts< TKSpace >::getKSpace ( CountedPtr< BinaryImage > bimage,
Parameters params = parametersKSpace() )
inlinestatic

Builds a Khalimsky space that encompasses the domain of the given image. Note that digital points are cells of the Khalimsky space with maximal dimensions. A closed Khalimsky space adds lower dimensional cells all around its boundary to define a closed complex.

Parameters
[in]bimageany binary image
[in]paramsthe parameters:
  • closed [1]: specifies if the Khalimsky space is closed (!=0) or not (==0).
Returns
the Khalimsky space.

Definition at line 351 of file Shortcuts.h.

353 {
354 int closed = params[ "closed" ].as<int>();
355 KSpace K;
356 if ( ! K.init( bimage->domain().lowerBound(),
357 bimage->domain().upperBound(),
358 closed ) )
359 trace.error() << "[Shortcuts::getKSpace]"
360 << " Error building Khalimsky space K=" << K << std::endl;
361 return K;
362 }

◆ getKSpace() [5/6]

template<typename TKSpace>
KSpace DGtal::Shortcuts< TKSpace >::getKSpace ( CountedPtr< GrayScaleImage > gimage,
Parameters params = parametersKSpace() )
inlinestatic

Builds a Khalimsky space that encompasses the domain of the given image. Note that digital points are cells of the Khalimsky space with maximal dimensions. A closed Khalimsky space adds lower dimensional cells all around its boundary to define a closed complex.

Parameters
[in]gimageany gray-scale image
[in]paramsthe parameters:
  • closed [1]: specifies if the Khalimsky space is closed (!=0) or not (==0).
Returns
the Khalimsky space.

Definition at line 375 of file Shortcuts.h.

377 {
378 int closed = params[ "closed" ].as<int>();
379 KSpace K;
380 if ( ! K.init( gimage->domain().lowerBound(),
381 gimage->domain().upperBound(),
382 closed ) )
383 trace.error() << "[Shortcuts::getKSpace]"
384 << " Error building Khalimsky space K=" << K << std::endl;
385 return K;
386 }

◆ getKSpace() [6/6]

template<typename TKSpace>
KSpace DGtal::Shortcuts< TKSpace >::getKSpace ( Parameters params = parametersKSpace() | parametersDigitizedImplicitShape3D())
inlinestatic

Builds a Khalimsky space that encompasses the bounding box specified by a digitization in params. It is useful when digitizing an implicit shape.

Parameters
[in]paramsthe parameters:
  • minAABB [-10.0]: the min value of the AABB bounding box (domain)
  • maxAABB [ 10.0]: the max value of the AABB bounding box (domain)
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
  • offset [ 5.0]: the digital dilation of the digital space, useful when you process shapes and that you add noise.
  • closed [1] : specifies if the Khalimsky space is closed (!=0) or not (==0).
Returns
the Khalimsky space.
See also
makeDigitizedImplicitShape3D

Definition at line 483 of file Shortcuts.h.

485 {
486 Scalar min_x = params[ "minAABB" ].as<Scalar>();
487 Scalar max_x = params[ "maxAABB" ].as<Scalar>();
488 Scalar h = params[ "gridstep" ].as<Scalar>();
489 Scalar offset = params[ "offset" ].as<Scalar>();
490 bool closed = params[ "closed" ].as<int>();
491 RealPoint p1( min_x - offset * h, min_x - offset * h, min_x - offset * h );
492 RealPoint p2( max_x + offset * h, max_x + offset * h, max_x + offset * h );
494 dshape->init( p1, p2, h );
495 Domain domain = dshape->getDomain();
496 KSpace K;
497 if ( ! K.init( domain.lowerBound(), domain.upperBound(), closed ) )
498 trace.error() << "[Shortcuts::getKSpace]"
499 << " Error building Khalimsky space K=" << K << std::endl
500 << "Note: if you use decimal values, check your locale for decimal point '.' or ','."
501 << std::endl;
502 return K;
503 }
GaussDigitizer< Space, ImplicitShape3D > DigitizedImplicitShape3D
defines the digitization of an implicit shape.
Space::RealPoint RealPoint
Point with floating-point coordinates.

◆ getMeanCurvatures()

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getMeanCurvatures ( CountedPtr< ImplicitShape3D > shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a space K, an implicit shape, a sequence of surfels, and a gridstep h, returns the mean curvatures at the specified surfels, in the same order.

Note
that the mean curvature is approximated by projecting the surfel centroid onto the implicit 3D shape.
Parameters
[in]shapethe implicit shape.
[in]Kthe Khalimsky space whose domain encompasses the digital shape.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • projectionMaxIter [ 20]: the maximum number of iteration for the projection.
  • projectionAccuracy[0.0001]: the zero-proximity stop criterion during projection.
  • projectionGamma [ 0.5]: the damping coefficient of the projection.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
Returns
the vector containing the mean curvatures, in the same order as surfels.

Definition at line 364 of file ShortcutsGeometry.h.

369 {
372 int maxIter = params[ "projectionMaxIter" ].as<int>();
373 double accuracy = params[ "projectionAccuracy" ].as<double>();
374 double gamma = params[ "projectionGamma" ].as<double>();
375 Scalar gridstep = params[ "gridstep" ].as<Scalar>();
376 true_estimator.attach( *shape );
378 true_estimator.init( gridstep, surfels.begin(), surfels.end() );
379 true_estimator.eval( surfels.begin(), surfels.end(),
381 return n_true_estimations;
382 }
sgf::ShapeMeanCurvatureFunctor< ImplicitShape3D > MeanCurvatureFunctor
TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, MeanCurvatureFunctor > TrueMeanCurvatureEstimator

◆ getNormalVectors()

template<typename TKSpace>
RealVectors DGtal::ShortcutsGeometry< TKSpace >::getNormalVectors ( CountedPtr< ImplicitShape3D > shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a space K, an implicit shape, a sequence of surfels, and a gridstep h, returns the normal vectors at the specified surfels, in the same order.

Note
that the normal vector is approximated by projecting the surfel centroid onto the implicit 3D shape.
Parameters
[in]shapethe implicit shape.
[in]Kthe Khalimsky space whose domain encompasses the digital shape.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • projectionMaxIter [ 20]: the maximum number of iteration for the projection.
  • projectionAccuracy[0.0001]: the zero-proximity stop criterion during projection.
  • projectionGamma [ 0.5]: the damping coefficient of the projection.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
Returns
the vector containing the true normals, in the same order as surfels.

Definition at line 325 of file ShortcutsGeometry.h.

330 {
333 int maxIter = params[ "projectionMaxIter" ].as<int>();
334 double accuracy = params[ "projectionAccuracy" ].as<double>();
335 double gamma = params[ "projectionGamma" ].as<double>();
336 Scalar gridstep = params[ "gridstep" ].as<Scalar>();
337 true_estimator.attach( *shape );
339 true_estimator.init( gridstep, surfels.begin(), surfels.end() );
340 true_estimator.eval( surfels.begin(), surfels.end(),
342 return n_true_estimations;
343 }
TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, NormalFunctor > TrueNormalEstimator
sgf::ShapeNormalVectorFunctor< ImplicitShape3D > NormalFunctor

◆ getPositions() [1/2]

template<typename TKSpace>
RealPoints DGtal::ShortcutsGeometry< TKSpace >::getPositions ( CountedPtr< ImplicitShape3D > shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a space K, an implicit shape, a sequence of surfels, and a gridstep h, returns the closest positions on the surface at the specified surfels, in the same order.

Note
The surfel centroids are iteratively projected onto the implicit surface through a damped Newton process.
Parameters
[in]shapethe implicit shape.
[in]Kthe Khalimsky space whose domain encompasses the digital shape.
[in]surfelsthe sequence of surfels that we project onto the shape's surface
[in]paramsthe parameters:
  • projectionMaxIter [ 20]: the maximum number of iteration for the projection.
  • projectionAccuracy[0.0001]: the zero-proximity stop criterion during projection.
  • projectionGamma [ 0.5]: the damping coefficient of the projection.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
Returns
the vector containing the true normals, in the same order as surfels.

Definition at line 257 of file ShortcutsGeometry.h.

262 {
265 int maxIter = params[ "projectionMaxIter" ].as<int>();
266 double accuracy = params[ "projectionAccuracy" ].as<double>();
267 double gamma = params[ "projectionGamma" ].as<double>();
268 Scalar gridstep = params[ "gridstep" ].as<Scalar>();
269 true_estimator.attach( *shape );
271 true_estimator.init( gridstep, surfels.begin(), surfels.end() );
272 true_estimator.eval( surfels.begin(), surfels.end(),
274 return n_true_estimations;
275 }
sgf::ShapePositionFunctor< ImplicitShape3D > PositionFunctor
TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, PositionFunctor > TruePositionEstimator

◆ getPositions() [2/2]

template<typename TKSpace>
RealPoints DGtal::ShortcutsGeometry< TKSpace >::getPositions ( CountedPtr< ImplicitShape3D > shape,
const RealPoints & points,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given an implicit shape and a sequence of points, returns the closest positions on the surface at the specified points, in the same order.

Parameters
[in]shapethe implicit shape.
[in]pointsthe sequence of points that we project onto the shape's surface.
[in]paramsthe parameters:
  • projectionMaxIter [ 20]: the maximum number of iteration for the projection.
  • projectionAccuracy[0.0001]: the zero-proximity stop criterion during projection.
  • projectionGamma [ 0.5]: the damping coefficient of the projection.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
Returns
the vector containing the projected points.

Definition at line 291 of file ShortcutsGeometry.h.

295 {
296 RealPoints proj_points( points.size() );
297 int maxIter = params[ "projectionMaxIter" ].as<int>();
298 double accuracy = params[ "projectionAccuracy" ].as<double>();
299 double gamma = params[ "projectionGamma" ].as<double>();
300 for ( unsigned int i = 0; i < points.size(); ++i )
301 proj_points[ i ] = shape->nearestPoint( points[ i ], accuracy,
302 maxIter, gamma );
303 return proj_points;
304 }
std::vector< RealPoint > RealPoints

◆ getPrincipalCurvaturesAndDirections()

template<typename TKSpace>
CurvatureTensorQuantities DGtal::ShortcutsGeometry< TKSpace >::getPrincipalCurvaturesAndDirections ( CountedPtr< ImplicitShape3D > shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a space K, an implicit shape, a sequence of surfels, and a gridstep h, returns the principal curvatures and principal directions as a tuple (k1, k2, d1, d2) at the specified surfels, in the same order.

Note
that the second principal direction is approximated by projecting the surfel centroid onto the implicit 3D shape.
Parameters
[in]shapethe implicit shape.
[in]Kthe Khalimsky space whose domain encompasses the digital shape.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • projectionMaxIter [ 20]: the maximum number of iteration for the projection.
  • projectionAccuracy[0.0001]: the zero-proximity stop criterion during projection.
  • projectionGamma [ 0.5]: the damping coefficient of the projection.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
Returns
the vector containing the principal curvatures and principal directions as a tuple (k1, k2, d1, d2), in the same order as surfels.

Definition at line 811 of file ShortcutsGeometry.h.

816 {
819 int maxIter = params[ "projectionMaxIter" ].as<int>();
820 double accuracy = params[ "projectionAccuracy" ].as<double>();
821 double gamma = params[ "projectionGamma" ].as<double>();
822 Scalar gridstep = params[ "gridstep" ].as<Scalar>();
823 true_estimator.attach( *shape );
826 true_estimator.init( gridstep, surfels.begin(), surfels.end() );
827 true_estimator.eval( surfels.begin(), surfels.end(),
829 return n_true_estimations;
830 }
TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, PrincipalCurvaturesAndDirectionsFunctor > TruePrincipalCurvaturesAndDirectionsEstimator
sgf::ShapePrincipalCurvaturesAndDirectionsFunctor< ImplicitShape3D > PrincipalCurvaturesAndDirectionsFunctor

◆ getRawDistanceToClosestSite()

template<typename TKSpace>
template<uint32_t p, typename PointRangeSites, typename PointRange>
std::vector< typename ExactPredicateLpSeparableMetric< Space, p >::Value > DGtal::ShortcutsGeometry< TKSpace >::getRawDistanceToClosestSite ( const PointRange & points,
const PointRangeSites & sites,
const Parameters & params = parametersVoronoiMap() )
inlinestatic

Computes the raw distances to the closest site from a range of points.

 Raw distance means that we are computing an exact representation of the distance  (e.g. dropping the 1/p exponent for Lp metric).

Template Parameters
pThe exponent in the Lp metric
PointRangeThe range of point
PointRangeSitesThe range of sites
Parameters
pointsThe one to compute the closest site of
sitesThe list of sites
paramsParameters
Returns
A vector of raw distances (eg. squared values for L2 metric) to the closest in the same order as 'points'.

Definition at line 2372 of file ShortcutsGeometry.h.

2376 {
2379
2380 // Compute domain of points
2381 Point pmin = *points.begin();
2382 Point pmax = pmin;
2383
2384 size_t pCount = 0;
2385 for (auto it = points.begin(); it != points.end(); ++it)
2386 {
2387 pCount ++;
2388 for (size_t i = 0; i < Space::dimension; ++i)
2389 {
2390 pmin[i] = std::min(pmin[i], (*it)[i] - 1);
2391 pmax[i] = std::max(pmax[i], (*it)[i] + 1);
2392 }
2393 }
2394
2395 for (auto it = sites.begin(); it != sites.end(); ++it)
2396 {
2397 for (size_t i = 0; i < Space::dimension; ++i)
2398 {
2399 pmin[i] = std::min(pmin[i], (*it)[i] - 1);
2400 pmax[i] = std::max(pmax[i], (*it)[i] + 1);
2401 }
2402 }
2403
2405
2406 DigitalSet set(domain); set.insert(sites.begin(), sites.end());
2408 Metric metric;
2409
2410 typename DTMap::PeriodicitySpec specs = {false, false, false};
2411 if (params["toroidal-x"].as<int>()) specs[0] = true;
2412 if (params["toroidal-y"].as<int>()) specs[1] = true;
2413 if (params["toroidal-z"].as<int>()) specs[2] = true;
2414
2415 auto map = DTMap(domain, predicate, metric, specs);
2416
2418 size_t i = 0;
2419 for (auto it = points.begin(); it != points.end(); ++it)
2420 {
2421 directions[i++] = map(*it);
2422 }
2423 return directions;
2424 }

◆ getScalarsAbsoluteDifference()

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getScalarsAbsoluteDifference ( const Scalars & v1,
const Scalars & v2 )
inlinestatic

Computes the absolute difference between each element of the two vectors.

Parameters
[in]v1any vector of values.
[in]v2any vector of values.
Returns
the vector composed of elemenst |v1[i]-v2[i]|.

Definition at line 2023 of file ShortcutsGeometry.h.

2025 {
2026 Scalars result( v1.size() );
2027 std::transform( v2.cbegin(), v2.cend(), v1.cbegin(), result.begin(),
2028 [] ( Scalar val1, Scalar val2 )
2029 { return fabs( val1 - val2 ); } );
2030 return result;
2031 }

◆ getScalarsNormL1()

template<typename TKSpace>
Scalar DGtal::ShortcutsGeometry< TKSpace >::getScalarsNormL1 ( const Scalars & v1,
const Scalars & v2 )
inlinestatic

Computes the l1-norm of v1-v2, ie the average of the absolute differences of the two vectors.

Parameters
[in]v1any vector of values.
[in]v2any vector of values.
Returns
the normL1 of v1-v2, ie. 1/n sum_i |v1[i]-v2[i]|.

Definition at line 2056 of file ShortcutsGeometry.h.

2058 {
2059 Scalar sum = 0;
2060 for ( unsigned int i = 0; i < v1.size(); i++ )
2061 sum += fabs( v1[ i ] - v2[ i ] );
2062 return sum / v1.size();
2063 }

◆ getScalarsNormL2()

template<typename TKSpace>
Scalar DGtal::ShortcutsGeometry< TKSpace >::getScalarsNormL2 ( const Scalars & v1,
const Scalars & v2 )
inlinestatic

Computes the l2-norm of v1-v2, ie the square root of the mean-squared error of the two vectors.

Parameters
[in]v1any vector of values.
[in]v2any vector of values.
Returns
the normL2 of v1-v2, ie. sqrt( 1/n sum_i (v1[i]-v2[i])^2 ).

Definition at line 2040 of file ShortcutsGeometry.h.

2042 {
2043 Scalar sum = 0;
2044 for ( unsigned int i = 0; i < v1.size(); i++ )
2045 sum += ( v1[ i ] - v2[ i ] ) * ( v1[ i ] - v2[ i ] );
2046 return sqrt( sum / v1.size() );
2047 }

◆ getScalarsNormLoo()

template<typename TKSpace>
Scalar DGtal::ShortcutsGeometry< TKSpace >::getScalarsNormLoo ( const Scalars & v1,
const Scalars & v2 )
inlinestatic

Computes the loo-norm of v1-v2, ie the maximum of the absolute differences of the two vectors.

Parameters
[in]v1any vector of values.
[in]v2any vector of values.
Returns
the normLoo of v1-v2, ie. max_i |v1[i]-v2[i]|.

Definition at line 2072 of file ShortcutsGeometry.h.

2074 {
2075 Scalar loo = 0;
2076 for ( unsigned int i = 0; i < v1.size(); i++ )
2077 loo = std::max( loo, fabs( v1[ i ] - v2[ i ] ) );
2078 return loo;
2079 }

◆ getSecondPrincipalCurvatures()

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getSecondPrincipalCurvatures ( CountedPtr< ImplicitShape3D > shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a space K, an implicit shape, a sequence of surfels, and a gridstep h, returns the second (greatest) principal curvatures at the specified surfels, in the same order.

Note
that the second principal curvature is approximated by projecting the surfel centroid onto the implicit 3D shape.
Parameters
[in]shapethe implicit shape.
[in]Kthe Khalimsky space whose domain encompasses the digital shape.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • projectionMaxIter [ 20]: the maximum number of iteration for the projection.
  • projectionAccuracy[0.0001]: the zero-proximity stop criterion during projection.
  • projectionGamma [ 0.5]: the damping coefficient of the projection.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
Returns
the vector containing the second principal curvatures, in the same order as surfels.

Definition at line 684 of file ShortcutsGeometry.h.

689 {
692 int maxIter = params[ "projectionMaxIter" ].as<int>();
693 double accuracy = params[ "projectionAccuracy" ].as<double>();
694 double gamma = params[ "projectionGamma" ].as<double>();
695 Scalar gridstep = params[ "gridstep" ].as<Scalar>();
696 true_estimator.attach( *shape );
699 true_estimator.init( gridstep, surfels.begin(), surfels.end() );
700 true_estimator.eval( surfels.begin(), surfels.end(),
702 return n_true_estimations;
703 }
sgf::ShapeSecondPrincipalCurvatureFunctor< ImplicitShape3D > SecondPrincipalCurvatureFunctor
TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, SecondPrincipalCurvatureFunctor > TrueSecondPrincipalCurvatureEstimator

◆ getSecondPrincipalDirections()

template<typename TKSpace>
RealVectors DGtal::ShortcutsGeometry< TKSpace >::getSecondPrincipalDirections ( CountedPtr< ImplicitShape3D > shape,
const KSpace & K,
const SurfelRange & surfels,
const Parameters & params = parametersShapeGeometry() )
inlinestatic

Given a space K, an implicit shape, a sequence of surfels, and a gridstep h, returns the second principal directions (corresponding to the greatest principal curvature) at the specified surfels, in the same order.

Note
that the second principal direction is approximated by projecting the surfel centroid onto the implicit 3D shape.
Parameters
[in]shapethe implicit shape.
[in]Kthe Khalimsky space whose domain encompasses the digital shape.
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • projectionMaxIter [ 20]: the maximum number of iteration for the projection.
  • projectionAccuracy[0.0001]: the zero-proximity stop criterion during projection.
  • projectionGamma [ 0.5]: the damping coefficient of the projection.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
Returns
the vector containing the second principal directions, in the same order as surfels.

Definition at line 768 of file ShortcutsGeometry.h.

773 {
776 int maxIter = params[ "projectionMaxIter" ].as<int>();
777 double accuracy = params[ "projectionAccuracy" ].as<double>();
778 double gamma = params[ "projectionGamma" ].as<double>();
779 Scalar gridstep = params[ "gridstep" ].as<Scalar>();
780 true_estimator.attach( *shape );
783 true_estimator.init( gridstep, surfels.begin(), surfels.end() );
784 true_estimator.eval( surfels.begin(), surfels.end(),
786 return n_true_estimations;
787 }
sgf::ShapeSecondPrincipalDirectionFunctor< ImplicitShape3D > SecondPrincipalDirectionFunctor
TrueDigitalSurfaceLocalEstimator< KSpace, ImplicitShape3D, SecondPrincipalDirectionFunctor > TrueSecondPrincipalDirectionEstimator

◆ getStatistic()

template<typename TKSpace>
ScalarStatistic DGtal::ShortcutsGeometry< TKSpace >::getStatistic ( const Scalars & v)
inlinestatic

Computes the statistic of a vector of scalars

Parameters
[in]va vector of scalars
Returns
its statistic.

Definition at line 1980 of file ShortcutsGeometry.h.

1981 {
1983 stat.addValues( v.begin(), v.end() );
1984 stat.terminate();
1985 return stat;
1986 }
::DGtal::Statistic< Scalar > ScalarStatistic

◆ getTrivialNormalVectors()

template<typename TKSpace>
RealVectors DGtal::ShortcutsGeometry< TKSpace >::getTrivialNormalVectors ( const KSpace & K,
const SurfelRange & surfels )
inlinestatic

Given a digital space K and a vector of surfels, returns the trivial normals at the specified surfels, in the same order.

Parameters
[in]Kthe Khalimsky space whose domain encompasses the digital shape.
[in]surfelsthe sequence of surfels at which we compute the normals
Returns
the vector containing the trivial normal vectors, in the same order as surfels.

Definition at line 1003 of file ShortcutsGeometry.h.

1005 {
1007 for ( auto s : surfels )
1008 {
1009 Dimension k = K.sOrthDir( s );
1010 bool direct = K.sDirect( s, k );
1012 t[ k ] = direct ? -1.0 : 1.0;
1013 result.push_back( t );
1014 }
1015 return result;
1016 }

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::getIINormalVectors().

◆ getVCMNormalVectors()

template<typename TKSpace>
template<typename TAnyDigitalSurface>
RealVectors DGtal::ShortcutsGeometry< TKSpace >::getVCMNormalVectors ( CountedPtr< TAnyDigitalSurface > surface,
const SurfelRange & surfels,
const Parameters & params = parametersGeometryEstimation() )
inlinestatic

Given a digital surface surface, a sequence of surfels, and some parameters params, returns the normal Voronoi Covariance Measure (VCM) estimation at the specified surfels, in the same order.

Template Parameters
TAnyDigitalSurfaceeither kind of DigitalSurface, like ShortcutsGeometry::LightDigitalSurface or ShortcutsGeometry::DigitalSurface.
Parameters
[in]surfacethe digital surface
[in]surfelsthe sequence of surfels at which we compute the normals
[in]paramsthe parameters:
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • t-ring [ 3.0]: the radius used when computing convolved trivial normals (it is a graph distance, not related to the grid step).
  • R-radius [ 10.0]: the constant for distance parameter R in R(h)=R h^alpha (VCM).
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • kernel [ "hat"]: the kernel integration function chi_r, either "hat" or "ball". )
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • surfelEmbedding [ 0]: the surfel -> point embedding for VCM estimator: 0: Pointels, 1: InnerSpel, 2: OuterSpel.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
Returns
the vector containing the estimated normals, in the same order as surfels.

Definition at line 1091 of file ShortcutsGeometry.h.

1095 {
1099 int verbose = params[ "verbose" ].as<int>();
1100 std::string kernel = params[ "kernel" ].as<std::string>();
1101 Scalar h = params[ "gridstep" ].as<Scalar>();
1102 Scalar R = params[ "R-radius" ].as<Scalar>();
1103 Scalar r = params[ "r-radius" ].as<Scalar>();
1104 Scalar t = params[ "t-ring" ].as<Scalar>();
1105 Scalar alpha = params[ "alpha" ].as<Scalar>();
1106 int embedding = params[ "embedding" ].as<int>();
1107 // Adjust parameters according to gridstep if specified.
1108 if ( alpha != 1.0 ) R *= pow( h, alpha-1.0 );
1109 if ( alpha != 1.0 ) r *= pow( h, alpha-1.0 );
1111 embedding == 1 ? InnerSpel : OuterSpel;
1112 if ( verbose > 0 )
1113 {
1114 trace.info() << "- VCM normal kernel=" << kernel << " emb=" << embedding
1115 << " alpha=" << alpha << std::endl;
1116 trace.info() << "- VCM normal r=" << (r*h) << " (continuous) "
1117 << r << " (discrete)" << std::endl;
1118 trace.info() << "- VCM normal R=" << (R*h) << " (continuous) "
1119 << R << " (discrete)" << std::endl;
1120 trace.info() << "- VCM normal t=" << t << " (discrete)" << std::endl;
1121 }
1122 if ( kernel == "hat" )
1123 {
1130 KernelFunction chi_r( 1.0, r );
1132 estimator.attach( *surface );
1133 estimator.setParams( embType, R, r, chi_r, t, Metric(), verbose > 0 );
1134 estimator.init( h, surfels.begin(), surfels.end() );
1135 estimator.eval( surfels.begin(), surfels.end(),
1137 }
1138 else if ( kernel == "ball" )
1139 {
1146 KernelFunction chi_r( 1.0, r );
1148 estimator.attach( *surface );
1149 estimator.setParams( embType, R, r, chi_r, t, Metric(), verbose > 0 );
1150 estimator.init( h, surfels.begin(), surfels.end() );
1151 estimator.eval( surfels.begin(), surfels.end(),
1153 }
1154 else
1155 {
1156 trace.warning() << "[ShortcutsGeometry::getVCMNormalVectors] Unknown kernel: "
1157 << kernel << std::endl;
1158 }
1159 return n_estimations;
1160 }

◆ getVectorsAngleDeviation()

template<typename TKSpace>
Scalars DGtal::ShortcutsGeometry< TKSpace >::getVectorsAngleDeviation ( const RealVectors & v1,
const RealVectors & v2 )
inlinestatic

Computes the statistic that measures the angle differences between the two arrays of unit vectors.

Parameters
[in]v1the first array of unit vectors (normals)
[in]v2the second array of unit vectors (normals)
Returns
the vector of angle differences.

Definition at line 1995 of file ShortcutsGeometry.h.

1997 {
1998 Scalars v( v1.size() );
1999 if ( v1.size() == v2.size() )
2000 {
2001 auto outIt = v.begin();
2002 for ( auto it1 = v1.cbegin(), it2 = v2.cbegin(), itE1 = v1.cend();
2003 it1 != itE1; ++it1, ++it2 )
2004 {
2005 Scalar angle_error = acos( (*it1).dot( *it2 ) );
2006 *outIt++ = angle_error;
2007 }
2008 }
2009 else
2010 {
2011 trace.warning() << "[ShortcutsGeometry::getVectorsAngleDeviation]"
2012 << " v1.size()=" << v1.size() << " should be equal to "
2013 << " v2.size()=" << v2.size() << std::endl;
2014 }
2015 return v;
2016 }

◆ getVoronoiMap() [1/2]

template<typename TKSpace>
template<uint32_t p, typename PointRange>
VoronoiMap< Space, VoronoiPointPredicate, ExactPredicateLpSeparableMetric< Space, p > > DGtal::ShortcutsGeometry< TKSpace >::getVoronoiMap ( CountedPtr< Domain > domain,
const PointRange & sites,
const Parameters & params = parametersVoronoiMap() )
inlinestatic

Computes the VoronoiMap on a domain, where sites are given through a range.

Template Parameters
pThe exponent in the Lp metric
PointRangeAn iterable of points (std::vector, DGtal::DigitalSet*, ...)
Parameters
domainThe associated domain on which the VoronoiMap is computed
sitesThe list of sites
paramsthe parameters
Returns
The VoronoiMap within a domain with prescribed sites

Definition at line 2154 of file ShortcutsGeometry.h.

2157 {
2160 DigitalSet set(*domain); set.insert(sites.begin(), sites.end());
2162 Metric metric;
2163
2164 typename VoroMap::PeriodicitySpec specs = {false, false, false};
2165 if (params["toroidal-x"].as<int>()) specs[0] = true;
2166 if (params["toroidal-y"].as<int>()) specs[1] = true;
2167 if (params["toroidal-z"].as<int>()) specs[2] = true;
2168
2169 // Do not return a pointer here for two reasons:
2170 // - The distance transform will not be passed anywhere else
2171 // - The operator() is less accessible with pointers.
2172 return VoroMap(*domain, predicate, metric, specs);
2173 }

◆ getVoronoiMap() [2/2]

template<typename TKSpace>
template<uint32_t p, typename PointRange>
VoronoiMap< Space, VoronoiPointPredicate, ExactPredicateLpSeparableMetric< Space, p > > DGtal::ShortcutsGeometry< TKSpace >::getVoronoiMap ( Domain domain,
const PointRange & sites,
const Parameters & params = parametersVoronoiMap() )
inlinestatic

Computes the VoronoiMap on a domain, where sites are given through a range.

Template Parameters
pThe exponent in the Lp metric
PointRangeAn iterable of points (std::vector, DGtal::DigitalSet*, ...)
Parameters
domainThe associated domain on which the VoronoiMap is computed
sitesThe list of sites
paramsthe parameters
Returns
The VoronoiMap within a domain with prescribed sites

Definition at line 2117 of file ShortcutsGeometry.h.

2120 {
2123 DigitalSet set(domain); set.insert(sites.begin(), sites.end());
2125 Metric metric;
2126
2127 typename VoroMap::PeriodicitySpec specs = {false, false, false};
2128 if (params["toroidal-x"].as<int>()) specs[0] = true;
2129 if (params["toroidal-y"].as<int>()) specs[1] = true;
2130 if (params["toroidal-z"].as<int>()) specs[2] = true;
2131
2132
2133 // Do not return a pointer here for two reasons:
2134 // - The distance transform will not be passed anywhere else
2135 // - The operator() is less accessible with pointers.
2136 return VoroMap(domain, predicate, metric, specs);
2137 }

◆ operator=() [1/2]

template<typename TKSpace>
ShortcutsGeometry & DGtal::ShortcutsGeometry< TKSpace >::operator= ( const ShortcutsGeometry< TKSpace > & other)
delete

Copy assignment operator.

Parameters
otherthe object to copy.
Returns
a reference on 'this'.

◆ operator=() [2/2]

template<typename TKSpace>
ShortcutsGeometry & DGtal::ShortcutsGeometry< TKSpace >::operator= ( ShortcutsGeometry< TKSpace > && other)
delete

Move assignment operator.

Parameters
otherthe object to move.
Returns
a reference on 'this'.

◆ orientVectors()

template<typename TKSpace>
void DGtal::ShortcutsGeometry< TKSpace >::orientVectors ( RealVectors & v,
const RealVectors & ref_v )
inlinestatic

Orient v so that it points in the same direction as ref_v (scalar product is then non-negative afterwards).

Parameters
[in,out]vthe vectors to reorient.
[in]ref_vthe vectors having the reference orientation.

Definition at line 1967 of file ShortcutsGeometry.h.

1969 {
1970 std::transform( ref_v.cbegin(), ref_v.cend(), v.cbegin(), v.begin(),
1971 [] ( RealVector rw, RealVector w )
1972 { return rw.dot( w ) >= 0.0 ? w : -w; } );
1973 }

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::getIINormalVectors().

◆ parametersATApproximation()

template<typename TKSpace>
Parameters DGtal::ShortcutsGeometry< TKSpace >::parametersATApproximation ( )
inlinestatic
Returns
the parameters and their default values which are used to compute Ambrosio-Tortorelli piecewise-smooth approximation of a function.
  • at-enabled [ 1 ]: 1 if AT is enabled, 0 otherwise.
  • at-alpha [ 0.1 ]: parameter alpha in AT (data fit)
  • at-lambda [ 0.025 ]: parameter lambda in AT (1/length of discontinuities)
  • at-epsilon [ 0.5 ]: (last value of) parameter epsilon in AT (width of discontinuities)
  • at-epsilon-start[ 2.0 ]: first value for parameter epsilon in Gamma-convergence optimization (sequence of AT optimization with decreasing epsilon)
  • at-epsilon-ratio[ 2.0 ]: ratio between two consecutive epsilon value in Gamma-convergence optimization (sequence of AT optimization with decreasing epsilon)
  • at-max-iter [ 10 ]: maximum number of alternate minization in AT optimization
  • at-diff-v-max [ 0.0001]: stopping criterion that measures the loo-norm of the evolution of v between two iterations
  • at-v-policy ["Maximum"]: the policy when outputing feature vector v onto cells: "Average"|"Minimum"|"Maximum"

Definition at line 1691 of file ShortcutsGeometry.h.

1692 {
1693 return Parameters
1694 ( "at-enabled", 1 )
1695 ( "at-alpha", 0.1 )
1696 ( "at-lambda", 0.025 )
1697 ( "at-epsilon", 0.25 )
1698 ( "at-epsilon-start", 2.0 )
1699 ( "at-epsilon-ratio", 2.0 )
1700 ( "at-max-iter", 10 )
1701 ( "at-diff-v-max", 0.0001 )
1702 ( "at-v-policy", "Maximum" );
1703 }

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::defaultParameters().

◆ parametersDigitizedImplicitShape3D()

template<typename TKSpace>
Parameters DGtal::Shortcuts< TKSpace >::parametersDigitizedImplicitShape3D ( )
inlinestatic
Returns
the parameters and their default values which are used for digitization.
  • minAABB [-10.0]: the min value of the AABB bounding box (domain)
  • maxAABB [ 10.0]: the max value of the AABB bounding box (domain)
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).
  • offset [ 5.0]: the digital dilation of the digital space, useful when you process shapes and that you add noise.

Definition at line 458 of file Shortcuts.h.

459 {
460 return Parameters
461 ( "minAABB", -10.0 )
462 ( "maxAABB", 10.0 )
463 ( "gridstep", 1.0 )
464 ( "offset", 5.0 );
465 }

◆ parametersGeometryEstimation()

template<typename TKSpace>
Parameters DGtal::ShortcutsGeometry< TKSpace >::parametersGeometryEstimation ( )
inlinestatic
Returns
the parameters and their default values which are used to estimate the geometry of a digital surface.
  • verbose [ 1]: verbose trace mode 0: silent, 1: verbose.
  • t-ring [ 3.0]: the radius used when computing convolved trivial normals (it is a graph distance, not related to the grid step).
  • R-radius [ 10.0]: the constant for distance parameter R in R(h)=R h^alpha (VCM).
  • r-radius [ 3.0]: the constant for kernel radius parameter r in r(h)=r h^alpha (VCM,II,Trivial).
  • kernel [ "hat"]: the kernel integration function chi_r, either "hat" or "ball". )
  • alpha [ 0.33]: the parameter alpha in r(h)=r h^alpha (VCM, II)."
  • surfelEmbedding [ 0]: the surfel -> point embedding for VCM estimator: 0: Pointels, 1: InnerSpel, 2: OuterSpel.
  • unit_u [0]: Use unit normals for (CNC) curvature computations.

Definition at line 980 of file ShortcutsGeometry.h.

981 {
982 return Parameters
983 ( "verbose", 1 )
984 ( "t-ring", 3.0 )
985 ( "kernel", "hat" )
986 ( "R-radius", 10.0 )
987 ( "r-radius", 3.0 )
988 ( "alpha", 0.33 )
989 ( "surfelEmbedding", 0 )
990 ( "unit_u" , 0 );
991 }

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::defaultParameters().

◆ parametersKSpace()

template<typename TKSpace>
Parameters DGtal::Shortcuts< TKSpace >::parametersKSpace ( )
inlinestatic
Returns
the parameters and their default values which are used for digitization.
  • closed [1 ]: specifies if the Khalimsky space is closed (!=0) or not (==0).
  • gridsizex[1.0]: specifies the space between points along x.
  • gridsizey[1.0]: specifies the space between points along y.
  • gridsizez[1.0]: specifies the space between points along z.

Definition at line 308 of file Shortcuts.h.

309 {
310 return Parameters
311 ( "closed", 1 )
312 ( "gridsizex", 1.0 )
313 ( "gridsizey", 1.0 )
314 ( "gridsizez", 1.0 );
315 }

◆ parametersShapeGeometry()

template<typename TKSpace>
Parameters DGtal::ShortcutsGeometry< TKSpace >::parametersShapeGeometry ( )
inlinestatic
Returns
the parameters and their default values which are used to approximate the geometry of continuous shape.
  • projectionMaxIter [ 20]: the maximum number of iteration for the projection.
  • projectionAccuracy[0.0001]: the zero-proximity stop criterion during projection.
  • projectionGamma [ 0.5]: the damping coefficient of the projection.
  • gridstep [ 1.0]: the gridstep that defines the digitization (often called h).

Definition at line 229 of file ShortcutsGeometry.h.

230 {
231 return Parameters
232 ( "projectionMaxIter", 20 )
233 ( "projectionAccuracy", 0.0001 )
234 ( "projectionGamma", 0.5 )
235 ( "gridstep", 1.0 );
236 }

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::defaultParameters().

◆ parametersVoronoiMap()

template<typename TKSpace>
Parameters DGtal::ShortcutsGeometry< TKSpace >::parametersVoronoiMap ( )
inlinestatic
Returns
the parameters and their default values which are used in VoronoiMap and DistanceTransformation

Definition at line 2092 of file ShortcutsGeometry.h.

2092 {
2093 return Parameters
2094 // Toricity might be moved elsewhere as this is quite a general parameter
2095 ( "toroidal-x" , false )
2096 ( "toroidal-y" , false )
2097 ( "toroidal-z" , false );
2098 }

Referenced by DGtal::ShortcutsGeometry< Z3i::KSpace >::defaultParameters().


The documentation for this class was generated from the following file: