Computes the zero level set of the given polynomial.
Usage: 3dImplicitSurfaceExtractorBy4DExtension [options] input
Allowed options are :
-h [ --help ]                         display this message
-p [ --polynomial ] arg               the implicit polynomial whose 
                                      zero-level defines the shape of 
                                      interest.
-a [ --minAABB ] arg (=-10)           the min value of the AABB bounding box 
                                      (domain)
-A [ --maxAABB ] arg (=10)            the max value of the AABB bounding box 
                                      (domain)
-g [ --gridstep ] arg (=1)            the gridstep that defines the 
                                      digitization (often called h). 
-t [ --timestep ] arg (=9.9999999999999995e-07)
                                      the gridstep that defines the 
                                      digitization in the 4th dimension 
                                      (small is generally a good idea, 
                                      default is 1e-6). 
-P [ --project ] arg (=Newton)        defines the projection: either No or 
                                      Newton.
-e [ --epsilon ] arg (=9.9999999999999995e-08)
                                      the maximum precision relative to the 
                                      implicit surface.
-n [ --max_iter ] arg (=500)          the maximum number of iteration in the 
                                      Newton approximation of F=0.
-v [ --view ] arg (=Normal)           specifies if the surface is viewed as 
                                      is (Normal) or if places close to 
                                      singularities are highlighted 
                                      (Singular).
Example: 
3dImplicitSurfaceExtractorBy4DExtension -p "-0.9*(y^2+z^2-1)^2-(x^2+y^2-1)^3" -g 0.06125 -a -2 -A 2 -v Singular -t 0.02
 You could also use other implicit surfaces:
- whitney : x^2-y*z^2
 
- 4lines : x*y*(y-x)*(y-z*x)
 
- cone : z^2-x^2-y^2
 
- simonU : x^2-z*y^2+x^4+y^4
 
- cayley3 : 4*(x^2 + y^2 + z^2) + 16*x*y*z - 1
 
- crixxi : -0.9*(y^2+z^2-1)^2-(x^2+y^2-1)^3
 
You should obtain such a result:
resulting visualisation.
 
- See also
 - 3dImplicitSurfaceExtractorBy4DExtension.cpp